Остекление

Уравнение клапейрона клаузиуса для равновесия жидкость пар. Уравнение Клапейрона-Клаузиуса (дифференциальное)

Уравнение клапейрона клаузиуса для равновесия жидкость пар. Уравнение Клапейрона-Клаузиуса (дифференциальное)

ТЕПЛОВЫЕ ЭФФЕКТЫ ФАЗОВЫХ ПЕРЕХОДОВ.

УРАВНЕНИЕ КЛАПЕЙРОНА – КЛАУЗИУСА.

Переход компонента из одной фазы в другую сопровождается выделением или поглощением теплоты, которую можно определить количественно на основе фундаментального уравнения термодинамики:

ВЫВОД И АНАЛИЗ УРАВНЕНИЯ КЛАПЕЙРОНА – КЛАУЗИУСА.

Для любого равновесного перехода вещества из одной фазы α в другую фазу β, применяя уравнение (* ) к каждой из фаз, можно написать

Индексы α и β отражают принадлежность параметров к соответствующей фазе. В равновесных условиях между фазами α и β изменение энергии Гиббса отсутствует, т.е.

Приравнивая правые части уравнений 1 и 2, получим

Для равновесного обратимого процесса согласно уравнениям и запишем

а уравнение (3) примет вид

где ∆H пер – теплота фазового перехода.

Тепловой эффект, сопровождающий фазовый переход, определяется следующим образом:

уравнение

Клапейрона–Клаузиуса

где ∆V – изменение объема в результате фазового перехода; dP/dT – изменение давления в зависимости от температуры при сохранении равновесия между двумя фазами.

Уравнение Клапейрона–Клаузиуса связывает тепловой эффект процесса с изменением давления насыщенного пара, температурой и изменением объема в процессе фазового перехода.

Для процессов испарения ж→п и сублимации тв→п уравнение Клапейрона–Клаузиуса можно представить следующим образом:

где ∆H исп, ∆H суб – теплоты испарения и сублимации; V п, V ж, V тв – мольные объемы пара, жидкости и твердого тела соответственно.

В процессе испарения и сублимации наблюдается значительное изменение удельного объема ∆V и существенное изменение величины dP/dT. При плавлении, напротив, изменение ∆V невелико, и величина dP/dT незначительна.

Пример 1. Проведем расчет по уравнению Клапейрона–Клаузиуса температуры плавления фенола Т пл. Плотность твердого фенола ρ тв при атмосферном давлении составляет 1,072∙10 3 кг/м 3 , а жидкого ρ ж = 1,056∙10 3 кг/м 3 ; теплота плавления ∆H пл = 1,045∙10 5 Дж/кг; температура замерзания 314,2 К. Определим dP/dT и температуру плавления при Р = 5,065∙10 7 Па:

Прирост температуры плавления при повышении давления на 1 атм (1,013∙10 5 Па) составляет 4,525∙10 -8 град/Па. При увеличении давления до 5,065∙10 7 Па температура плавления увеличивается на ∆T = (dT/dP)∆P = 4,525∙10 -8 ∙ 5,065∙10 7 = 2,29 К, т.е. составит Т пл = 314,2+2,29 = 316,49 К.

Следует иметь в виду, что в процессе плавления у большинства веществ V ж > V тв, тогда ∆V>0 и при повышении давления Р температура плавления повышается Т.

Однако, такие вещества как вода (Н 2 О), висмут (Bi), имеют объем твердой фазы V тв больше, чем объем жидкой фазы V ж < V тв. Тогда в процессе плавления этих веществ изменение мольного объема ∆V будет <0 и при повышении давления Р температура плавления будет уменьшаться Т↓

ПРИМЕР 2. Скольжение коньков по льду обусловлено образованием в плоскости скольжения воды, которая выполняет роль жидкой смазки. Ранее считали, что образование воды происходит за счет плавления льда под давлением острого конька. Однако термодинамические расчеты по уравнению Клапейрона–Клаузиуса не подтверждают этого. Действительно, удельный объем воды (ж) и льда (тв) равны соответственно V ж уд = 10 -3 м 3 /кг и V тв уд = 1,091·10 -3 м 3 /кг; теплота плавления ∆H пл = 332,4 кДж/кг:

Решение:

Это значение показывает, что для понижения температуры таяния льда на один градус Кельвина необходимо увеличить давление на 1,34∙10 7 Па, т.е. примерно на 134 атмосферы, что нереально, поскольку такое давление лед не выдерживает – трескается.

Таяние льда происходит в основном в результате трения и превращения работы в теплоту при скольжении конька по льду, а не за счет повышения давления на лед.

Уравнение для процесса испарения можно представить в интегральном виде. Мольный объем пара значительно превосходит мольный объем жидкости, V п >> V ж, т.е. величиной V ж можно пренебречь. Тогда уравнение Клапейрона–Клаузиуса запишется в виде:

Пар подчиняется законам идеального газа: PV=RT , тогда , преобразуем уравнение, переставляя давление Р в левую часть уравнения, а dT в правую часть. Получаем:

или

Проведем интегрирование уравнения (1) в пределах от Т 1 до Т 2 и соответственно от Р 1 до Р 2 при условии, что в области невысоких давлений пара ∆Н исп ≈ const; в результате интегрирования получим:

∆Н исп / R = const, выносим за знак интеграла

При помощи уравнения (2) можно графически определить значения теплоты испарения, если известны давления Р 1 и Р 2 и соответствующие им температуры испарения Т 1 и Т 2 . Для этого необходимо отложить на оси абсцисс значения обратной температуры, а на оси ординат – lnP.

Зависимость lnP от 1/Т будет линейной, а тангенс угла наклона этой прямой равен , т.е. , а

Расчетные значения ∆Н исп получаются с достаточной для практики точностью, не уступающей точности непосредственного измерения. Возможно использование уравнения (2) для обратного расчета, когда по значению ∆Н исп определяют изменение давления при изменении температуры в процессе испарения.

Теплоту фазовых переходов можно определить и по величине стандартной энтальпии образования, в зависимости от фазового состояния продуктов реакции.

Пример. Лучше всего это показать на примере теплоты образования воды из газообразных кислорода и водорода, которая составляет

H 2(г) +1/2О 2(г) =Н 2 О (г),(ж),(тв)

для водяного пара ∆Н (г) 0 = -241,82 кДж/моль; для воды в жидком состоянии ∆Н (ж) 0 = -285,83 кДж/моль; для льда ∆Н (тв) 0 = -291,82 кДж/моль. Теплота конденсации воды равна:

а теплота превращения воды в лед:

Как видно, тепловой эффект фазовых переходов значительно меньше теплоты образования веществ.

В результате фазовых переходов происходит изменение энтропии . Такие изменения в зависимости от температуры представим на рисунке.

Как известно, энтропия идеального кристалла при абсолютном нуле равна нулю. С ростом температуры атомы (ионы) флуктуировать относительно равновесного положения, число возможных способов их размещения растет, и энтропия увеличивается (ΔS>0). При достижении температуры плавления (точка А на рисунке) кристаллическая решетка разрушается скачкообразно (отрезок АБ), увеличивается термодинамическая вероятность системы W, а в соответствии с формулой S=k∙lnW (где k – постоянная Больцмана) энтропия при переходе от твердого в жидкое состояние растет. Более значительный скачок энтропии имеет место при переходе из жидкого состояния в газообразное (отрезок ВГ), когда ближний порядок расположения частиц друг относительно друга нарушается, и движение частиц становится хаотичным.

Пример. Оценим скачок энтропии на примере фазовых переходов воды:

,

когда известны стандартные абсолютные значения энтропии S тв 0 =39,4; S ж 0 =69,9; S г 0 =188,7 Дж/(моль·К).

Тогда имеем

В соответствии с рисунком для воды

По известной энтальпии фазового перехода можно рассчитать изменение энтропии в соответствии с формулой

Пример. Вычислим изменение энтропии в процессе парообразования 1 моля этилхлорида при 12,3 0 С, когда теплота испарения ∆Н исп =24,16 кДж/моль.

Молекулярная масса = 64,5 г/моль.

В заключение отмечу, что мы рассматривали лишь фазовые переходы I рода. При фазовых переходах I рода свойства веществ, выражаемые, например, через химический потенциал, первыми производными одной из характеристических функций, изменяются скачком при непрерывном изменении соответствующих параметров: температуры, давления, объема и энтропии. При этом выделяется или поглощается теплота перехода ∆Н пер в соответствии с уравнением Клапейрона–Клаузиуса.

Кроме них, однако, существуют фазовые переходы II рода. Они не сопровождаются выделением или поглощением теплоты, для них уравнение Клапейрона–Клаузиуса теряет смысл. Эти переходы характеризуют изменения в системе, которые не определяются объемом и запасом энергии. В этом случае первые производные одной из характеристических функций непрерывны, а вторые производные (например, теплоемкость) изменяются скачком. К фазовым переходам II рода относятся переходы парамагнетика в ферромагнетик, диэлектрика в сегнетоэлектрик, а также процессы возникновения сверхтекучести, сверхпроводимости и др.

В системе, состоящей из нескольких фаз чистого вещества, возможны переходы вещества из одной фазы в другую. Такие переходы называют фазовыми переходами. Фазовые переходы характеризуются зависимостью температуры фазового превращения от внешнего давления или давления насыщенного пара от температуры системы. Уравнение, характеризующее такие зависимости, предложено Клапейроном и и позже модифицировано Клаузиусом.

Пусть 1 моль вещества равновесно переходит из одной фазы (1) в другую (2) при р, Т = const. Ограничимся рассмотрением фазовых переходов первого рода, для которых характерно равенство изобарных потенциалов двух фаз и скачкообразное изменение энтропии S и объёма V .

К фазовым переходам первого рода относятся следующие изотермические переходы:

(испарение),

(сублимация),

(плавление, кристаллизация).

Условием равновесием является равенство мольных энергий Гиббса вещества в двух фазах: G 1 = G 2 . Если р и Т одновременно изменяются на dp и dT , то G тоже изменится на dG и новое условие равновесия запишется как

Из соотношения (2.40) следует, что

Т. е. . (14)

С учетом того, что

где DV = V 2 - V 1 — разность мольных объёмов двух фаз, DS и DH - изменение энтропии и энтальпии вещества при переходе 1 моля вещества из одной фазы (1) в другую (2). Уравнение (4.16) называют уравнением Клапейрона-Клаузиуса. Оно устанавливает связь между изменением температуры фазового перехода с изменением внешнего давления или изменением давления насыщенного пара с изменением температуры, с одной стороны, и теплотой фазового перехода и изменением объёма вещества при фазовом переходе, с другой стороны.

1) Рассмотрим применение уравнения (4.16) к процессам плавления . В этом случае уравнение Клапейрона-Клаузиуса обычно используют в следующей форме:

Поскольку D пл Н > 0, знак производной зависит от знака DV . Для большинства веществ

> 0 > 0,

вправо.

Для немногих веществ, в том числе для воды, висмута , галлия , чугуна :

< 0 < 0,

что соответствует наклону кривой для этого фазового перехода влево .

Итак, если при плавлении вещества его мольный объем уменьшается,то

т. е. при увеличении внешнего давления температура плавления вещества уменьшается.

Если плавление сопровождается увеличением мольного объема, то

т. е. при увеличении внешнего давления температура плавления вещества тоже увеличивается.

2). Рассмотрим применение уравнения (4.16) к процессам испарения и сублимации .

Для процессов испарения или сублимации уравнение Клапейрона-Клаузиуса записывают в виде


, (18)

где V K — объем конденсированной фазы (жидкости V Ж или твердого тела V ТВ). При температуре, гораздо ниже критической (при Т КР: V Ж = V П), можно пренебречь объёмом жидкой фазы по сравнению с объёмом того же весового количества пара. В результате уравнение (18) преобразуется в

При невысоких давлениях и температурах к пару можно применить законы идеальных газов () и исключить из уравнения (19) объём пара. Тогда

. (20)

Окончательно для процесса испарения или сублимации получаем (дифференциальную) форму уравнения Клапейрона- Клаузиуса :

. (21)

Если принять D пар Н постоянной величиной (что возможно для небольших температурных интервалов), то после интегрирования уравнения (21) получаем интегральную форму уравнения Клапейрона-Клаузиуса:

, (22)

. (23)

Эти уравнения устанавливает в явном виде связь теплоты парообразования вещества с зависимостью давления насыщенного пара от температуры.

Итак, для процессов парообразования ,

т. е с увеличением температуры растет давление насыщенного пара вещества.

В отличие от температуры плавления, температура кипения очень сильно зависит от давления, что связано с большой величиной DV , которой сопровождаются процессы испарения и сублимации.

В отличие от теплоты парообразования, которая изменяется в широких пределах, энтропия парообразования - величина более или менее постоянная. Для многих неорганических и органических веществ выполняется правило Трутона :

89 Дж/(моль К), (24),

где Т н.т.кип. - нормальная температура кипения жидкости, т.е. температура кипения при внешнем давлении, равном 1 атм.

ТЕПЛОВЫЕ ЭФФЕКТЫ ФАЗОВЫХ ПЕРЕХОДОВ.

УРАВНЕНИЕ КЛАПЕЙРОНА – КЛАУЗИУСА.

Переход компонента из одной фазы в другую сопровождается выделением или поглощением теплоты, которую можно определить количественно на основе фундаментального уравнения термодинамики:

ВЫВОД И АНАЛИЗ УРАВНЕНИЯ КЛАПЕЙРОНА – КЛАУЗИУСА.

Для любого равновесного перехода вещества из одной фазы α в другую фазу β, применяя уравнение (* ) к каждой из фаз, можно написать

Индексы α и β отражают принадлежность параметров к соответствующей фазе. В равновесных условиях между фазами α и β изменение энергии Гиббса отсутствует, т.е.

,

П
риравнивая правые части уравнений 1 и 2, получим

Для равновесного обратимого процесса согласно уравнениям
и
запишем

а уравнение (3) примет вид

,

где ∆H пер – теплота фазового перехода.

Тепловой эффект, сопровождающий фазовый переход, определяется следующим образом:

уравнение

Клапейрона Клаузиуса

где ∆V – изменение объема в результате фазового перехода; dP/dT – изменение давления в зависимости от температуры при сохранении равновесия между двумя фазами.

Уравнение Клапейрона–Клаузиуса связывает тепловой эффект процесса с изменением давления насыщенного пара, температурой и изменением объема в процессе фазового перехода.

Для процессов испарения ж→п и сублимации тв→п уравнение Клапейрона–Клаузиуса можно представить следующим образом:

где ∆H исп, ∆H суб – теплоты испарения и сублимации; V п, V ж, V тв – мольные объемы пара, жидкости и твердого тела соответственно.

В процессе испарения и сублимации наблюдается значительное изменение удельного объема ∆V и существенное изменение величины dP/dT. При плавлении, напротив, изменение ∆V невелико, и величина dP/dT незначительна.

Пример 1. Проведем расчет по уравнению Клапейрона–Клаузиуса температуры плавления фенола Т пл. Плотность твердого фенола ρ тв при атмосферном давлении составляет 1,072∙10 3 кг/м 3 , а жидкого ρ ж = 1,056∙10 3 кг/м 3 ; теплота плавления ∆H пл = 1,045∙10 5 Дж/кг; температура замерзания 314,2 К. Определим dP/dT и температуру плавления при Р = 5,065∙10 7 Па:

Прирост температуры плавления при повышении давления на 1 атм (1,013∙10 5 Па) составляет 4,525∙10 -8 град/Па. При увеличении давления до 5,065∙10 7 Па температура плавления увеличивается на ∆T = (dT/dP)∆P = 4,525∙10 -8 ∙ 5,065∙10 7 = 2,29 К, т.е. составит Т пл = 314,2+2,29 = 316,49 К.

Следует иметь в виду, что в процессе плавления у большинства веществ V ж > V тв, тогда ∆V>0 и при повышении давления Р температура плавления повышается Т.

Однако, такие вещества как вода (Н 2 О), висмут (Bi), имеют объем твердой фазы V тв больше, чем объем жидкой фазы V ж < V тв. Тогда в процессе плавления этих веществ изменение мольного объема ∆V будет <0 и при повышении давления Р температура плавления будет уменьшаться Т↓

ПРИМЕР 2. Скольжение коньков по льду обусловлено образованием в плоскости скольжения воды, которая выполняет роль жидкой смазки. Ранее считали, что образование воды происходит за счет плавления льда под давлением острого конька. Однако термодинамические расчеты по уравнению Клапейрона–Клаузиуса не подтверждают этого. Действительно, удельный объем воды (ж) и льда (тв) равны соответственно V ж уд = 10 -3 м 3 /кг и V тв уд = 1,091·10 -3 м 3 /кг; теплота плавления ∆H пл = 332,4 кДж/кг:

Решение:

Это значение показывает, что для понижения температуры таяния льда на один градус Кельвина необходимо увеличить давление на 1,34∙10 7 Па, т.е. примерно на 134 атмосферы, что нереально, поскольку такое давление лед не выдерживает – трескается.

Таяние льда происходит в основном в результате трения и превращения работы в теплоту при скольжении конька по льду, а не за счет повышения давления на лед.

Уравнение для процесса испарения
можно представить в интегральном виде. Мольный объем пара значительно превосходит мольный объем жидкости, V п >> V ж, т.е. величиной V ж можно пренебречь. Тогда уравнение Клапейрона–Клаузиуса запишется в виде:

Пар подчиняется законам идеального газа: PV=RT
, тогда
, преобразуем уравнение, переставляя давление Р в левую часть уравнения, а dT в правую часть. Получаем:

или

Проведем интегрирование уравнения (1) в пределах от Т 1 до Т 2 и соответственно от Р 1 до Р 2 при условии, что в области невысоких давлений пара ∆Н исп ≈ const; в результате интегрирования получим:

∆Н исп / R = const, выносим за знак интеграла

При помощи уравнения (2) можно графически определить значения теплоты испарения, если известны давления Р 1 и Р 2 и соответствующие им температуры испарения Т 1 и Т 2 . Для этого необходимо отложить на оси абсцисс значения обратной температуры, а на оси ординат – lnP.

Зависимость lnP от 1/Т будет линейной, а тангенс угла наклона этой прямой равен
, т.е.
, а

Расчетные значения ∆Н исп получаются с достаточной для практики точностью, не уступающей точности непосредственного измерения. Возможно использование уравнения (2) для обратного расчета, когда по значению ∆Н исп определяют изменение давления при изменении температуры в процессе испарения.

Теплоту фазовых переходов можно определить и по величине стандартной энтальпии образования, в зависимости от фазового состояния продуктов реакции.

Пример . Лучше всего это показать на примере теплоты образования воды из газообразных кислорода и водорода, которая составляет

H 2(г) +1/2О 2(г) =Н 2 О (г),(ж),(тв)

для водяного пара ∆Н (г) 0 = -241,82 кДж/моль; для воды в жидком состоянии ∆Н (ж) 0 = -285,83 кДж/моль; для льда ∆Н (тв) 0 = -291,82 кДж/моль. Теплота конденсации воды равна:

а теплота превращения воды в лед:

Как видно, тепловой эффект фазовых переходов значительно меньше теплоты образования веществ.

В результате фазовых переходов происходит изменение энтропии . Такие изменения в зависимости от температуры представим на рисунке.

Как известно, энтропия идеального кристалла при абсолютном нуле равна нулю. С ростом температуры атомы (ионы) флуктуировать относительно равновесного положения, число возможных способов их размещения растет, и энтропия увеличивается (ΔS>0). При достижении температуры плавления (точка А на рисунке) кристаллическая решетка разрушается скачкообразно (отрезок АБ), увеличивается термодинамическая вероятность системы W, а в соответствии с формулой S=k∙lnW (где k – постоянная Больцмана) энтропия при переходе от твердого в жидкое состояние растет. Более значительный скачок энтропии имеет место при переходе из жидкого состояния в газообразное (отрезок ВГ), когда ближний порядок расположения частиц друг относительно друга нарушается, и движение частиц становится хаотичным.

Пример. Оценим скачок энтропии на примере фазовых переходов воды:

,

когда известны стандартные абсолютные значения энтропии S тв 0 =39,4; S ж 0 =69,9; S г 0 =188,7 Дж/(моль·К).

Тогда имеем

В соответствии с рисунком для воды

По известной энтальпии фазового перехода можно рассчитать изменение энтропии в соответствии с формулой

Пример. Вычислим изменение энтропии в процессе парообразования 1 моля этилхлорида при 12,3 0 С, когда теплота испарения ∆Н исп =24,16 кДж/моль.

Молекулярная масса
= 64,5 г/моль.

В заключение отмечу, что мы рассматривали лишь фазовые переходы I рода. При фазовых переходах I рода свойства веществ, выражаемые, например, через химический потенциал, первыми производными одной из характеристических функций, изменяются скачком при непрерывном изменении соответствующих параметров: температуры, давления, объема и энтропии. При этом выделяется или поглощается теплота перехода ∆Н пер в соответствии с уравнением Клапейрона–Клаузиуса.

Кроме них, однако, существуют фазовые переходы II рода. Они не сопровождаются выделением или поглощением теплоты, для них уравнение Клапейрона–Клаузиуса теряет смысл. Эти переходы характеризуют изменения в системе, которые не определяются объемом и запасом энергии. В этом случае первые производные одной из характеристических функций непрерывны, а вторые производные (например, теплоемкость) изменяются скачком. К фазовым переходам II рода относятся переходы парамагнетика в ферромагнетик, диэлектрика в сегнетоэлектрик, а также процессы возникновения сверхтекучести, сверхпроводимости и др.

В настоящее время насчитывается около 400 твердых минералов, для которых наблюдаются фазовые переходы II рода: рутил, анатаз, алмаз и особенно кварц, который имеет семь модификаций, причем наряду с фазовыми переходами I рода наблюдаются фазовые переходы II рода. Так, при 573 0 С и переходе модификации кварца β
α теплоемкость и коэффициент линейного расширения изменяются скачкообразно (I род), но при этом поглощается теплота 10,9 кДж/моль (II род).

Клапейрона - Клаузиуса уравнение

термодинамическое уравнение, относящееся к процессам перехода вещества из одной фазы в другую (испарение, плавление, сублимация, полиморфное превращение и др.). Согласно К. - К. у., Теплота фазового перехода (например, теплота испарения, теплота плавления) при равновесно протекающем процессе определяется выражением

где Т - температура перехода (процесс изотермический), dp/dT - значение производной от давления по температуре при данной температуре перехода, (V 2 -V 1 ) - изменение объёма вещества при переходе его из первой фазы во вторую.

Первоначально уравнение было получено в 1834 Б. П. Э. Клапейрон ом из анализа Карно цикл а для конденсирующегося пара, находящегося в тепловом равновесии с жидкостью. В 1850 P. Клаузиус усовершенствовал уравнение и распространил его на др. фазовые переходы. К. - К. у. применимо к любым фазовым переходам, сопровождающимся поглощением или выделением теплоты (т. н. фазовым переходом 1 рода), и является прямым следствием условий фазового равновесия (См. Фазовое равновесие), из которых оно и выводится.

К. - К. у. может служить для расчёта любой из величин, входящих в уравнение, если остальные известны. В частности, с его помощью рассчитывают теплоты испарения, экспериментальное определение которых сопряжено со значительными трудностями.

Часто К. - К. у. записывают относительно производных dp/dT или dT/dp:

Для процессов испарения и сублимации dp/dT выражает изменение давления насыщенного пара р с температурой Т, а для процессов плавления и полиморфного превращения dT/dp определяет изменение температуры перехода с давлением. Иными словами, К. - К. у. является дифференциальным уравнением кривой фазового равновесия в переменных р, Т.

Для решения К. - К. у. необходимо знать, как изменяются с температурой и давлением величины L, V 1 и V 2 , что представляет сложную задачу. Обычно эту зависимость устанавливают эмпирически и решают К. - К. у. численно.

К. - К. у. применимо как к чистым веществам, так и к растворам и отдельным компонентам растворов. В последнем случае К. - К. у. связывает парциальное давление насыщенного пара данного компонента с его парциальной теплотой испарения.

Ю. И. Поляков.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Клапейрона - Клаузиуса уравнение" в других словарях:

    КЛАПЕЙРОНА МЕНДЕЛЕЕВА УРАВНЕНИЕ, уравнение состояния (см. УРАВНЕНИЕ СОСТОЯНИЯ) для идеального газа (см. ИДЕАЛЬНЫЙ ГАЗ), отнесенное к 1 молю (см. МОЛЬ) газа. В 1874 Д. И. Менделеев (см. МЕНДЕЛЕЕВ Дмитрий Иванович) на основе уравнения Клапейрона… … Энциклопедический словарь

    КЛАПЕЙРОНА-КЛАУЗИСА УРАВНЕНИЕ - термодинамическое уравнение, относящееся к процессам перехода вещества из одной фазы в другую (испарение, плавление, полиморфное превращение и др.). Согласно Клапейрона Клаузиса уравнения теплота фазового перехода (например, теплота плавле … Металлургический словарь

    Ур ние состояния идеального газа, устанавливающее связь между его объемом V. давлением ри абс. т рой Т. Имеет вид: pV=nRT. где п число молей газа, R =8,31431 Дж/моль. К) газовая постоянная. Для 1 моля газа pv=RT, где v молярный объем. К. М. у.… … Химическая энциклопедия

    Уравнение состояния Статья является частью серии «Термодинамика». Уравнение состояния идеального газа Уравнение Ван дер Ваальса Уравнение Дитеричи Разделы термодинамики Начала термодинамики Уравнен … Википедия

    - (Клапейрона Менделеева уравнение), зависимость между параметрами идеального газа (давлением р, объёмом V и абс. темп рой Т), определяющими его состояние: pV=BT, где коэфф. пропорциональности В зависит от массы газа М и его мол. массы. Установлен… … Физическая энциклопедия

    Уравнение состояния Стат … Википедия

    - (Клапейрона Менделеева уравнение), зависимость между давлением p, абсолютной температурой T и объемом V идеального газа массы M: pV=BT, где B=M/m (m масса молекулы газа в атомных единицах массы). Установлена французским ученым Б.П.Э. Клапейроном… … Современная энциклопедия - Клапейрона Менделеева уравнение, найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа: давлением газа р, его объёмом V и абсолютной температурой Т. К. у.… … Большая советская энциклопедия

    Клапейрона Менделеева уравнение [по имени франц. физика Б. Клапейрона (В. Clapeyron; 1799 1864) и рус. химика Д. И. Менделеева (1834 1907)], ур ние состояния идеального газа: pVm =RT, где р давление, Т термодинамическая температура газа, Vm… … Большой энциклопедический политехнический словарь

ОПРЕДЕЛЕНИЕ

Две любые фазы одного и того же вещества могут находиться в равновесии лишь при определенном давлении, величина которого зависит от температуры. Для двухфазной равновесной однокомпонентной системы является функцией температуры. Эта зависимость выражается уравнением Клапейрона – Клаузиуса :

где — удельная теплота фазового перехода из первой фазы во вторую, – разность удельных объемов фаз.

Уравнение 1 связывает производную от равновесного давления по температуре с теплотой перехода, температурой и разностью удельных объемов фаз, находящихся в . Согласно уравнению (1) знак производной зависит от того, каким изменением объема – возрастанием или уменьшением сопровождается фазовый переход. При испарении жидкости или твердого тела объем всегда увеличивается, поэтому для кривых испарения и сублимации title="Rendered by QuickLaTeX.com" height="23" width="54" style="vertical-align: -6px;">, увеличение температуры ведет к увеличению равновесного давления. При плавлении, как правило, объем увеличивается, что означает, что повышая давление мы увеличиваем температуру плавления. Но здесь есть исключения, например, лед-вода. Объем жидкой фазы (воды) меньше, объема льда. Лед можно расплавить, не повышая температуру выше , просто увеличивая давление.

Если вторая фаза является идеальным газом, то уравнение Клапейрона – Клаузиуса имеет вид:

где – теплота испарения для одного моля вещества, молярная которого равна .

Решение уравнения Клапейрона — Клаузиуса

Решением уравнения (2) будет:

где Q – количество теплоты, необходимое для фазового перехода

Строго говоря, общий вид функции p(T), то есть уравнение (1), был установлен Клапейроном, при анализе цикла Карно для конденсирующегося пара, который находится в равновесии с жидкостью, а Клаузиус упростил его до уравнения (2) предположив, что вторая фаза вещества (пар) – идеальный газ и молярный объем жидкости много меньше, чем молярный объем газа (пара). Кроме того, Клаузиус распространил уравнение (1) для других фазовых переходов, которые сопровождаются теплопередачей.

Уравнение 1 и 2 часто используются для расчета теплоты испарения или возгонки (это трудно установить экспериментально).

Примеры решения задач

ПРИМЕР 1

Задание Фазовый переход некоторого вещества происходит при температуре T, при атмосферном давлении. Удельная теплота превращения q. Скачок удельного объема данного вещества при фазовом превращении Найти смещение точки фазового перехода данного вещества при изменении давления на .
Решение При заданных условиях уравнение Клапейрона – Клаузиуса можно записать в следующем виде:

Из этого уравнения легко выразить искомое смещение температуры, точки фазового перехода при изменении :

Ответ Смещение точки фазового перехода при заданных условиях можно найти используя соотношение

ПРИМЕР 2

Задание В закрытом сосуде находятся вода и насыщенный пар. Найти удельную теплоту испарения воды при температуре . Если упругость паров , насыщающих пространство при данной температуре Па, а при температуре равна Па.


Решение Основой для решения задачи является уравнение

где , напомню, что здесь идет речь об удельных объемах.

и для одного моль ( моль) газа запишем:

Для того, чтобы определиться с дальнейшим ходом расчетов найдем объем моля пара и оценим объем жидкости, сравним их.

Copyright © 2024. Ремонт и отделка. Декор. Двор и сад. Строительство дома. Остекление. Дизайн. Двери