Утепление

Фазы фазовые переходы. Фазы и фазовые переходы

Фазы фазовые переходы. Фазы и фазовые переходы

В обычных условиях любое вещество пребывает в одном из трех состояний — твердом, жидком или газообразном (см. Агрегатные состояния вещества). Каждому из этих условий соответствует своя структура связей между молекулами и/или атомами, характеризующаяся определенной энергией связи между ними. Для изменения этой структуры нужен либо приток тепловой энергии извне (например, при плавлении твердого вещества), либо отток энергии вовне (например, при кристаллизации).

Взяв, для начала, твердое вещество, мы понимаем умозрительно, что в нем молекулы/атомы связаны в некую жесткую кристаллическую или аморфную структуру, — при незначительном нагреве они лишь начинают «трястись» вокруг своей фиксированной позиции (чем выше температура, тем больше амплитуда колебаний). При дальнейшем нагревании вещества молекулы расшатываются всё сильнее, пока, наконец, не срываются с «насиженного» места и не отправляются в «свободное плавание». Это и есть плавление или таяние твердого вещества в жидкость. Поступление же энергии, необходимой для таяния вещества, называют теплотой плавления.

График изменения температуры твердого вещества при переходе им точки плавления сам по себе весьма интересен. До точки плавления по мере нагревания атомы/молекулы раскачиваются вокруг своего фиксированного положения всё сильнее, и поступление каждой дополнительной порции тепловой энергии приводит к повышению температуры твердого тела. Однако по достижении твердым веществом температуры плавления, оно на какое-то время так и остается при этой температуре, несмотря на продолжающийся приток тепла, пока в нем не накопится достаточное количество тепловой энергии для разрыва жестких межмолекулярных связей. То есть, в процессе фазового перехода вещества из твердого состояния в жидкое энергия поглощается им без повышения температуры, поскольку вся она уходит на разрыв межмолекулярных связей. Вот почему кубик льда в коктейле даже в самую жару остается ледяным по температуре, пока не растает весь. При этом, тая, кубик льда отбирает тепло у окружающего его коктейля (и тем самым охлаждает его до приятной температуры), а сам набирается энергии, которая требуется ему для разрыва межмолекулярных связей и окончательного саморазрушения.

Количество теплоты, необходимое для плавления или испарения единицы объема твердого вещества или жидкости, называется, соответственно, скрытой теплотой плавления или скрытой теплотой испарения. И величины здесь фигурируют порой немалые. Например, для нагревания 1 кг воды от 0°С до 100°С требуется «всего» 420 000 джоулей (Дж) тепловой энергии, а для того, чтобы обратить этот килограмм воды в 1 кг пара с температурой, равной тем же 100°С, — целых 2 260 000 Дж энергии.

После того, как твердая масса полностью превратилась в жидкость, дальнейшее поступление тепла повлечет вновь за собой повышение температуры вещества. В жидком состоянии молекулы вещества по-прежнему находятся в близком контакте, но жесткие межмолекулярные связи между ними разорваны, и силы взаимодействия, удерживающие молекулы вместе, на несколько порядков слабее, чем в твердом теле, поэтому молекулы начинают достаточно свободно перемещаться друг относительно друга. Дальнейшее поступление тепловой энергии доводит жидкость до фазы кипения , и начинается активное испарение или парообразование.

И, опять же, как было описано в случае таяния или плавления, на какое-то время вся дополнительно поступающая энергия уходит на разрыв жидкостных связей между молекулами и высвобождение их в газообразное состояние (при неизменной температуре кипения). Энергия, затрачиваемая на разрыв этих, казалось бы, некрепких связей, — т. н. скрытая теплота парообразования — также требуется немалая (см. пример выше).

Все те же процессы при оттоке энергии (остужении) вещества происходят в обратном порядке. Сначала газ остывает с понижением температуры, и так происходит, пока он не достигнет точки конденсации — температуры, при которой начинается сжижение, — и она в точности равна температуре испарения (кипения) соответствующей жидкости. При конденсации, по мере того, как силы взаимного притяжения между молекулами начинают брать верх над энергией теплового движения, газ начинает превращаться в жидкость — «конденсироваться». При этом выделяется так называемая удельная теплота конденсации — она в точности равна скрытой удельной теплоте испарения, о которой уже говорилось. То есть, сколько энергии вы потратили на испарение определенной массы жидкости, ровно столько энергии пар и отдаст в виде тепла при конденсации обратно в жидкость.

То, что количество теплоты, выделяемое при конденсации, весьма высоко, — факт легко проверяемый: достаточно поднести ладонь к носику кипящего чайника. Помимо жара от пара, как такового, ваша кожа пострадает еще и от теплоты, выделившейся в результате его конденсации в жидкую воду.

При дальнейшем остывании жидкости до точки замерзания (температура которой равна точке таяния ), еще раз начнется процесс отдачи тепловой энергии вовне без понижения температуры самого вещества. Этот процесс называется кристаллизацией , и при нем выделяется ровно столько же тепловой энергии, сколько отбирается из окружающей среды при плавлении (переходе вещества из твердой фазы в жидкую).

Есть и еще один тип фазового перехода — из твердого состояния вещества непосредственно в газообразное (минуя жидкость). Такое фазовое превращение называется возгонкой , или сублимацией . Самый бытовой пример: вывешенное сушиться на мороз сырое белье. Вода в нем сначала кристаллизуется в лед, а затем — под воздействием прямых солнечных лучей — микроскопические кристаллики льда попросту испаряются, минуя жидкую фазу. Другой пример: на рок-концертах «сухой лед» (замороженная двуокись углерода CO 2) используется для устройства дымовой завесы — она испаряется прямо в воздух, окутывая выступающих музыкантов и также минуя жидкую фазу. Соответственно, на преобразование твердого вещества непосредственно в газ затрачивается энергия сублимации.

Понятие фаза в термодинамике рассматривают в более широком смысле, чем агрегатные состояния. Согласно , под фазой в термодинамике понимают термодинамически равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества . Иногда неравновесное метастабильное состояние вещества также называют фазой, но метастабильной. Фазы вещества могут отличаться характером движения структурных частиц и наличием или отсутствием упорядоченной структуры. Различные кристаллические фазы могут отличаться друг от друга типом кристаллической структуры, электропроводностью, электрическими и магнитными свойствами и др. Жидкие фазы отличаются друг от друга концентрацией компонентов, наличием или отсутствием сверхпроводимости и т.п.

Переход вещества из одной фазы в другую называется фазовым переходом . К фазовым переходам относятся явления парообразования и плавления, конденсации и кристаллизации и др.. В двухфазной системе фазы находятся в равновесии при одной и той же температуре. При увеличении объёма некоторая часть жидкости превращается в пар, но при этом для поддержания температуры неизменной необходимо извне передать некоторое количество теплоты. Таким образом, для осуществления перехода из жидкой фазы в газообразную системе необходимо передать теплоту без изменения температуры системы. Эта теплота идёт на изменение фазового состояния вещества и называется теплотой фазового превращения или скрытой теплотой перехода . С повышением температуры скрытая теплота перехода фиксированной массы вещества уменьшается, а при критической температуре она равна нулю. Для характеристики фазового перехода используют удельную теплоту фазового перехода. Удельной теплотой фазового перехода называется количество скрытой теплоты, приходящейся на единицу массы вещества.

Фазовые переходы с поглощением или выделением скрытой теплоты перехода называются фазовыми переходами первого рода . При этом внутренняя энергия и плотность изменяются скачком. При переходе из более упорядоченного состояния в менее упорядоченное состояние энтропия увеличивается. В таблице приведены фазовые переходы первого рода и их основные характеристики.

Таблица. Фазовые переходы первого рада и их основные характеристики .

Фазовый переход

Направление перехода

Скрытая теплота перехода

Изменение энтропии при фазовом переходе

Парообразование

Жидкость  пар

L П – удельная теплота парообразования,

т- масса жидкости, переведённой в пар.

Энтропия возрастает

Конденсация

Пар  жидкость

, где

L КОН – величина удельной теплоты конденсации,

т- масса пара, переведённого в жидкость

Энтропия убывает

ΔS кр < 0

Плавление

Твёрдое тело жидкость

, где

L ПЛ – удельная теплота плавления,

т- масса твёрдого тела, переведённого в жидкость

Энтропия возрастает

ΔS пл > 0

Кристаллизация

Жидкость  твёрдое тело

, где

L КР

т- масса жидкости, переведённой в твёрдое тело - кристалл

Энтропия убывает

ΔS кр < 0

Сублимация

(или возгонка)

Твёрдое тело  Пар

, где

L С – удельная теплота сублимации,

т- масса твёрдого тела, переведённого в пар

Энтропия возрастает

Десублимация

(Кристаллизация минуя жидкую фазу)

Пар  твёрдое тело

(минуя жидкую фазу)

, где

L КР – величина удельной теплоты кристаллизации,

т- масса пара, переведённого в твёрдое тело - кристалл

Энтропия убывает

ΔS кр < 0

Существует связь между давлением, при котором находится в равновесии двухфазная система, и температурой при фазовых переходах первого рода. Эта связь описывается . Рассмотрим вывод этого уравнения для закрытых систем. Если число частиц в системе постоянно, то изменение внутренней энергии, согласно первому началу термодинамики, определяется выражением: . Равновесие между фазами наступит при условии, что Т 1 = Т 2 и Р 1 = Р 2 . Рассмотрим бесконечно малый обратимый цикл Карно (рис.6.8), изотермы которого соответствуют состоянию двухфазной системы при температурах Т и dT . Поскольку параметры состояния при этом изменяются бесконечно мало, изотермы и адиабаты на рис.6.8 изображены прямыми. Давление в таком цикле изменяется на величину dP . Работа системы за цикл определяется формулой:
. Предположим, что цикл реализован для системы масса вещества которой равна единице. Коэффициент полезного действия такого элементарного цикла Карно можно определить по формулам:
или
, гдеL П – удельная теплота парообразования. Приравнивая правые части этих равенств, и подставив выражение работы через давление и объём, получим:
. Соотнесём изменение давления с изменением температуры и получим:

(6.23)

Уравнение (6.23) называется уравнением Клапейрона – Клаузиуса . Анализируя это уравнение, можно заключить, что с ростом температуры давление увеличивается. Это следует из того, что
, а значит и
.

Уравнение Клапейрона – Клаузиуса применимо не только к переходу «жидкость – пар». Оно применимо ко всем переходам первого рода. В общем виде его можно записать так:

(6.24)

Используя уравнение Клапейрона – Клаузиуса можно представить диаграмму состояний системы в координатах Р,Т (рис.6.9). На этой диаграмме кривая 1 – кривая сублимации. Она соответствует равновесному состоянию двух фаз: твёрдой и парообразной. Точки, лежащие слева от этой кривой характеризуют однофазное твёрдое состояние. Точки, лежащие справа, характеризуют парообразное состояние. Кривая 2 – кривая плавления. Она соответствует равновесному состоянию двух фаз: твёрдой и жидкой. Точки, лежащие слева от этой кривой характеризуют однофазное твёрдое состояние. Точки, лежащие справа от неё до кривой 3, характеризуют жидкое состояние. Кривая 3 – кривая парообразования. Она соответствует равновесному состоянию двух фаз: жидкой и парообразной. Точки, лежащие слева от этой кривой характеризуют однофазное жидкое состояние. Точки, лежащие справа, характеризуют парообразное состояние. Кривая 3, в отличии от кривых 1 и 2, ограничена с двух сторон. С одной стороны – тройной точкой Тр , с другой стороны - критической точкой К (рис.6.9). Тройная точка описывает равновесное состояние сразу трёх фаз: твёрдой, жидкой и парообразной.


Вселенная может вот-вот рухнуть и все в ней - в том числе и мы - будет сжиматься в маленький, твердый шар. Процесс может уже начался где-то в нашем космосе и захватывает остальные части Вселенной. Мы на пороге Фазового перехода.

Физики исследователи из Дании утверждают, что они доказали, что это возможно на основе математических уравнений. Основой теории является то, что рано или поздно произойдет радикальный сдвиг во вселенной и каждая частица в ней, станет чрезвычайно тяжелой.


Все - каждая песчинка, каждая планета и каждая галактика - станет в миллиарды раз тяжелее, чем сейчас. Согласно теории Хиггса, после Большого взрыва материя нашего мира испытала несколько последовательных превращений, сходных с теми, которые при остывании претерпевает вода (она, как известно, превращается из пара в жидкость, а при дальнейшем охлаждении – в кристалл) или, скажем, магнит (при высоких температурах кусок железа не магнитит, магнитные свойства появляются только, когда температура падает, кажется, до 500о С).


Такие превращения называются в физике фазовыми переходами. Фазовые переходы приводят к радикальному изменению свойств материалов, как это должно быть известно каждому из повседневного опыта. Есть изменения очевидные (вода и пар не обладают жесткостью, а лед обладает), а есть и не столь очевидные (например, в кристаллах есть три рода звука, распространяющиеся, вообще говоря, с разными скоростями, а в жидкостях и газах, - только один). Фазовые переходы, происшедшие в ранней Вселенной, привели к радикальному изменению действующих в ней фундаментальных сил, вызвав сдвиг в ткани пространства-времени.

Во время этого перехода, пустое пространство наполнилось невидимой субстанцией, которую мы сейчас называем поле Хиггса. Поле Хиггса или хиггсовское поле - поле, обеспечивающее спонтанное нарушение симметрии электрослабых взаимодействий благодаря нарушению симметрии вакуума, названо по имени разработчика его теории, английского физика Питера Хиггса. Квант этого поля - хиггсовская частица (хиггсовский бозон). Некоторые элементарные частицы взаимодействуют с этой областью, получая энергию в процессе взаимодействия.


Используя математические уравнения, исследователи из Университета Южной Дании обнаружили, что поле Хиггса может существовать в двух состояниях, как материя может существовать в виде жидкости или твердого тела.

Во втором состоянии, поле Хиггса в миллиарды раз более плотное, чем то, что ученые уже наблюдали. Если это сверхплотное поле Хиггса существует, то "пузырь" из этого состояния может внезапно появиться в определенном месте Вселенной в любое время. Пузырь затем развернется на скорости света, охватывая все пространство сворачивая поля Хиггса.


Все элементарные частицы внутри пузыря наберут массу гораздо тяжелее, чем если бы они были за пределами пузыря и они будут соединены вместе, чтобы сформировать сверхмассивный центр, пишет dailymail.co.uk


"Многие теории и расчеты предсказывали такой фазовый переход и раньше, но была некоторая неопределенность", - говорит Йенс Крог из Университета Южной Дании.


"Сейчас мы провели более точные расчеты и мы видим две вещи: Да, Вселенная, вероятно рухнет и крах ее еще более вероятен, чем предсказывали старые расчеты», - добавляет он.


"Фазовый переход начнется где-то во Вселенной, откуда распространиться везде. Может быть, переход уже начался где-то во вселенной и сейчас он распространяется в остальной Вселенной".

"Может быть, свертывание начинается прямо здесь и сейчас. Или, может быть оно начнется через миллиард лет. Мы не знаем. Точное время предсказать просто невозможно. Это уже происходит или произойдет", - говорят ученые.


Исследователи основываются на трех основных уравнениях, лежащих в основе предсказания фазового перехода. Хотя новые расчеты предсказывают, что переход сейчас вероятнее, чем когда-либо прежде, также возможно, что это не произойдет вообще. Необходимым условием такого развития событий является современное представление о том, что Вселенная состоит из элементарных частиц, которые мы знаем сегодня, в том числе частицы Хиггса. Если Вселенная содержит неизвестные частицы, вся основа для прогнозирования изменения фазы окажется ошибочной.
Темы кодификатора ЕГЭ : изменение агрегатных состояний вещества, плавление и кристаллизация, испарение и конденсация, кипение жидкости, изменение энергии в фазовых переходах.

Лёд, вода и водяной пар - примеры трёх агрегатных состояний вещества: твёрдого, жидкого и газообразного. В каком именно агрегатном состоянии находится данное вещество - зависит от его температуры и других внешних условий, в которых оно находится.

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы - изменения агрегатных состояний вещества тела. Нас будут интересовать следующие фазовые переходы .

Плавление (твёрдое тело жидкость) и кристаллизация (жидкость твёрдое тело).
Парообразование (жидкость пар) и конденсация (пар жидкость).

Плавление и кристаллизация

Большинство твёрдых тел являются кристаллическими , т.е. имеют кристаллическую решётку - строго определённое, периодически повторяющееся в пространстве расположение своих частиц.

Частицы (атомы или молекулы) кристаллического твёрдого тела совершают тепловые колебания вблизи фиксированных положений равновесия - узлов кристаллической решётки.

Например, узлы кристаллической решётки поваренной соли - это вершины кубических клеток «трёхмерной клетчатой бумаги» (см. рис. 1 , на котором шарики большего размера обозначают атомы хлора (изображение с сайта en.wikipedia.org.)); если дать испариться воде из раствора соли, то оставшаяся соль будет нагромождением маленьких кубиков.

Рис. 1. Кристаллическая решётка

Плавлением называется превращение кристаллического твёрдого тела в жидкость. Расплавить можно любое тело - для этого нужно нагреть его до температуры плавления , которая зависит лишь от вещества тела, но не от его формы или размеров. Температуру плавления данного вещества можно определить из таблиц.

Наоборот, если охлаждать жидкость, то рано или поздно она перейдёт в твёрдое состояние. Превращение жидкости в кристаллическое твёрдое тело называется кристаллизацией или отвердеванием . Таким образом, плавление и кристаллизация являются взаимно обратными процессами.

Температура, при которой жикость кристаллизуется, называется температурой кристаллизации . Оказывается, что температура кристаллизации равна температуре плавления: при данной температуре могут протекать оба процесса. Так, при лёд плавится, а вода кристаллизуется; что именно происходит в каждом конкретном случае - зависит от внешних условий (например, подводится ли тепло к веществу или отводится от него).

Как происходят плавление и кристаллизация? Каков их механизм? Для уяснения сути этих процессов рассмотрим графики зависимости температуры тела от времени при его нагревании и охлаждении - так называемые графики плавления и кристаллизации.

График плавления

Начнём с графика плавления (рис. 2 ). Пусть в начальный момент времени (точка на графике) тело является кристаллическим и имеет некоторую температуру .

Рис. 2. График плавления

Затем к телу начинает подводиться тепло (скажем, тело поместили в плавильную печь), и температура тела повышается до величины - температуры плавления данного вещества. Это участок графика.

На участке тело получает количество теплоты

где - удельная теплоёмкость вещества твёрдого тела, - масса тела.

При достижении температуры плавления (в точке ) ситуация качественно меняется. Несмотря на то, что тепло продолжает подводиться, температура тела остаётся неизменной. На участке происходит плавление тела - его постепенный переход из твёрдого состояния в жидкое. Внутри участка мы имеем смесь твёрдого вещества и жидкости, и чем ближе к точке , тем меньше остаётся твёрдого вещества и тем больше появляется жидкости. Наконец, в точке от исходного твёрдого тела не осталось ничего: оно полностью превратилось в жидкость.

Участок соответствует дальнейшему нагреванию жидкости (или, как говорят, расплава ). На этом участке жидкость поглощает количество теплоты

где - удельная теплоёмкость жидкости.

Но нас сейчас больше всего интересует - участок фазового перехода. Почему не меняется температура смеси на этом участке? Тепло-то подводится!

Вернёмся назад, к началу процесса нагревания. Повышение температуры твёрдого тела на участке есть результат возрастания интенсивности колебаний его частиц в узлах кристаллической решётки: подводимое тепло идёт на увеличение кинетической энергии частиц тела (на самом деле некоторая часть подводимого тепла расходуется на совершение работы по увеличению средних расстояний между частицами - как мы знаем, тела при нагревании расширяются. Однако эта часть столь мала, что её можно не принимать во внимание.).

Кристаллическая решётка расшатывается всё сильнее и сильнее, и при температуре плавления размах колебаний достигает той предельной величины, при которой силы притяжения между частицами ещё способны обеспечивать их упорядоченное расположение друг относительно друга. Твёрдое тело начинает «трещать по швам», и дальнейшее нагревание разрушает кристаллическую решётку - так начинается плавление на участке .

С этого момента всё подводимое тепло идёт на совершение работы по разрыву связей, удерживающих частицы в узлах кристаллической решётки, т.е. на увеличение потенциальной энергии частиц. Кинетическая энергия частиц при этом остаётся прежней, так что температура тела не меняется. В точке кристаллическая структура исчезает полностью, разрушать больше нечего, и подводимое тепло снова идёт на увеличение кинетической энергии частиц - на нагревание расплава.

Удельная теплота плавления

Итак, для превращения твёрдого тела в жидкость мало довести его до температуры плавления. Необходимо дополнительно (уже при температуре плавления) сообщить телу некоторое количество теплоты для полного разрушения кристаллической решётки (т.е. для прохождения участка ).

Это количество теплоты идёт на увеличение потенциальной энергии взаимодействия частиц. Следовательно, внутренняя энергия расплава в точке больше внутренней энергии твёрдого тела в точке на величину .

Опыт показывает, что величина прямо пропорциональна массе тела:

Коэффициент пропорциональности не зависит от формы и размеров тела и является характеристикой вещества. Он называется удельной теплотой плавления вещества . Удельную теплоту плавления данного вещества можно найти в таблицах.

Удельная теплота плавления численно равна количеству теплоты, необходимому для превращения в жидкость одного килограмма данного кристаллического вещества, доведённого до температуры плавления.

Так, удельная теплота плавления льда равна кДж/кг, свинца - кДж/кг. Мы видим, что для разрушения кристаллической решётки льда требуется почти в раз больше энергии! Лёд относится к веществам с большой удельной теплотой плавления и поэтому весной тает не сразу (природа приняла свои меры: обладай лёд такой же удельной теплотой плавления, как и свинец, вся масса льда и снега таяла бы с первыми оттепелями, затопляя всё вокруг).

График кристаллизации

Теперь перейдём к рассмотрению кристаллизации - процесса, обратного плавлению. Начинаем с точки предыдущего рисунка. Предположим, что в точке нагревание расплава прекратилось (печку выключили и расплав выставили на воздух). Дальнейшее изменение температуры расплава представлено на рис. (3) .

Рис. 3. График кристаллизации

Жидкость остывает (участок ), пока её температура не достигнет температуры кристаллизации, которая совпадает с температурой плавления .

С этого момента температура расплава меняться перестаёт, хотя тепло по-прежнему уходит от него в окружающую среду. На участке происходит кристаллизация расплава - его постепенный переход в твёрдое состояние. Внутри участка мы снова имеем смесь твёрдой и жидкой фаз, и чем ближе к точке , тем больше становится твёрдого вещества и тем меньше - жидкости.Наконец,вточке жидкостинеостаётсявовсе-онаполностьюкристаллизовалась.

Следующий участок соответствует дальнейшему остыванию твёрдого тела, возникшего в результате кристаллизации.

Нас опять-таки интересует участок фазового перехода : почему температура остаётся неизменной, несмотря на уход тепла?

Снова вернёмся в точку . После прекращения подачи тепла температура расплава понижается, так как его частицы постепенно теряют кинетическую энергию в результате соударений с молекулами окружающей среды и излучения электромагнитных волн.

Когда температура расплава понизится до температуры кристаллизации (точка ), его частицы замедлятся настолько, что силы притяжения окажутся в состоянии «развернуть» их должным образом и придать им строго определённую взаимную ориентацию в пространстве. Так возникнут условия для зарождения кристаллической решётки, и она действительно начнёт формироваться благодаря дальнейшему уходу энергии из расплава в окружающее пространство.

Одновременно начнётся встречный процесс выделения энергии: когда частицы занимают свои места в узлах кристаллической решётки, их потенциальная энергия резко уменьшается, за счёт чего увеличивается их кинетическая энергия - кристаллизующаяся жидкость является источником тепла (часто у проруби можно увидеть сидящих птиц. Они там греются!). Выделяющееся в ходе кристаллизации тепло в точности компенсирует потерю тепла в окружающую среду, и потому температура на участке не меняется.

В точке расплав исчезает, а вместе с завершением кристаллизации исчезает и этот внутренний «генератор» тепла. Вследствие продолжающегося рассеяния энергии во внешнюю среду понижение температуры возобновится, но только остывать уже будет образовавшееся твёрдое тело (участок ).

Как показывает опыт, при кристаллизации на участке выделяется ровно то же самое количество теплоты , которое было поглощено при плавлении на участке .

Парообразование и конденсация

Парообразование - это переход жидкости в газообразное состояние (в пар ). Существует два способа парообразования: испарение и кипение.

Испарением называется парообразование, которое происходит при любой температуре со свободной поверхности жидкости. Как вы помните из листка «Насыщенный пар», причиной испарения является вылет из жидкости наиболее быстрых молекул, которые способны преодолеть силы межмолекулярного притяжения. Эти молекулы и образуют пар над поверхностью жидкости.

Разные жидкости испаряются с разными скоростями: чем больше силы притяжения молекул друг к другу - тем меньшее число молекул в единицу времени окажутся в состоянии их преодолеть и вылететь наружу, и тем меньше скорость испарения. Быстро испаряются эфир, ацетон, спирт (их иногда называют летучими жидкостями), медленнее - вода, намного медленнее воды испаряются масло и ртуть.

Скорость испарения растёт с повышением температуры (в жару бельё высохнет скорее), поскольку увеличивается средняя кинетическая энергия молекул жидкости, и тем самым возрастает число быстрых молекул, способных покинуть её пределы.

Скорость испарения зависит от площади поверхности жидкости: чем больше площадь, тем большее число молекул получают доступ к поверхности, и испарение идёт быстрее (вот почему при развешивании белья его тщательно расправляют).

Одновременно с испарением наблюдается и обратный процесс: молекулы пара, совершая беспорядочное движение над поверхностью жидкости, частично возвращаются обратно в жидкость. Превращение пара в жидкость называется конденсацией .

Конденсация замедляет испарение жидкости. Так, в сухом воздухе бельё высохнет быстрее, чем во влажном. Быстрее оно высохнет и на ветру: пар сносится ветром, и испарение идёт более интенсивно

В некоторых ситуациях скорость конденсации может оказаться равной скорости испарения. Тогда оба процесса компенсируют друг друга и наступает динамическое равновесие: из плотно закупоренной бутылки жидкость не улетучивается годами, а над поверхностью жидкости в этом случае находится насыщенный пар .

Конденсацию водяного пара в атмосфере мы постоянно наблюдаем в виде облаков, дождей и выпадающей по утрам росы; именно испарение и конденсация обеспечивают круговорот воды в природе, поддерживая жизнь на Земле.

Поскольку испарение - это уход из жидкости самых быстрых молекул, в процессе испарения средняя кинетическая энергия молекул жидкости уменьшается, т.е. жидкость остывает. Вам хорошо знакомо ощущение прохлады и порой даже зябкости (особенно при ветре), когда выходишь из воды: вода, испаряясь по всей поверхности тела, уносит тепло, ветер же ускоряет процесс испарения (nеперь понятно, зачем мы дуем на горячий чай. Кстати сказать, ещё лучше при этом втягивать воздух в себя, поскольку на поверхность чая тогда приходит сухой окружающий воздух, а не влажный воздух из наших лёгких;-)).

Ту же прохладу можно почувствовать, если провести по руке кусочком ваты, смоченным в летучем растворителе (скажем, в ацетоне или жидкости для снятия лака). В сорокаградусную жару благодаря усиленному испарению влаги через поры нашего тела мы сохраняем свою температуру на уровне нормальной; не будь этого терморегулирующего механизма, в такую жару мы бы попросту погибли.

Наоборот, в процессе конденсации жидкость нагревается: молекулы пара при возвращении в жидкость разгоняются силами притяжения со стороны находящихся поблизости молекул жидкости, в результате чего средняя кинетическая энергия молекул жидкости увеличивается (сравните это явление с выделением энергии при кристаллизации расплава!).

Кипение

Кипение - это парообразование, происходящее по всему объёму жидкости.

Кипение оказывается возможным потому, что в жидкости всегда растворено какое-то количество воздуха, попавшего туда в результате диффузии. При нагревании жидкости этот воздух расширяется, пузырьки воздуха постепенно увеличиваются в размерах и становятся видимы невооружённым глазом (в кастрюле с водой они осаждают дно и стенки). Внутри воздушных пузырьков находится насыщенный пар, давление которого, как вы помните, быстро растёт с повышением температуры.

Чем крупнее становятся пузырьки, тем большая действует на них архимедова сила, и определённого момента начинается отрыв и всплытие пузырьков. Поднимаясь вверх, пузырьки попадают в менее нагретые слои жидкости; пар в них конденсируется, и пузырьки сжимаются опять. Схлопывание пузырьков вызывает знакомый нам шум, предшествующий закипанию чайника. Наконец, с течением времени вся жидкость равномерно прогревается, пузырьки достигают поверхности и лопаются, выбрасывая наружу воздух и пар - шум сменяется бульканьем, жидкость кипит.

Пузырьки, таким образом, служат «проводниками» пара изнутри жидкости на её поверхность. При кипении наряду с обычным испарением идёт превращение жидкости в пар по всему объёму - испарение внутрь воздушных пузырьков с последующим выводом пара наружу. Вот почему кипящая жидкость улетучивается очень быстро: чайник, из которого вода испарялась бы много дней, выкипит за полчаса.

В отличие от испарения, происходящего при любой температуре, жидкость начинает кипеть только при достижении температуры кипения - именно той температуры, при которой пузырьки воздуха оказываются в состоянии всплыть и добраться до поверхности. При температуре кипения давление насыщенного пара становится равно внешнему давлению на жидкость (в частности, атмосферному давлению ). Соответственно, чем больше внешнее давление, тем при более высокой температуре начнётся кипение.

При нормальном атмосферном давлении ( атм или Па) температура кипения воды равна . Поэтому давление насыщенного водяного пара при температуре равно Па. Этот факт необходимо знать для решения задач - часто он считается известным по умолчанию.

На вершине Эльбруса атмосферное давление равно атм, и вода там закипит при температуре . А под давлением атм вода начнёт кипеть только при .

Температура кипения (при нормальном атмосферном давлении) является строго определённой для данной жидкости величиной (температуры кипения, приводимые в таблицах учебников и справочников - это температуры кипения химически чистых жидкостей. Наличие в жидкости примесей может изменять температуру кипения. Скажем, водопроводная вода содержит растворённый хлор и некоторые соли, поэтому её температура кипения при нормальном атмосферном давлении может несколько отличаться от ). Так, спирт кипит при , эфир - при , ртуть - при . Обратите внимание: чем более летучей является жидкость, тем ниже её температура кипения. В таблице температур кипения мы видим также, что кислород кипит при . Значит, при обычных температурах кислород - это газ!

Мы знаем, что если чайник снять с огня, то кипение тут же прекратится - процесс кипения требует непрерывного подвода тепла. Вместе с тем, температура воды в чайнике после закипания перестаёт меняться, всё время оставаясь равной . Куда же при этом девается подводимое тепло?

Ситуация аналогична процессу плавления: тепло идёт на увеличение потенциальной энергии молекул. В данном случае - на совершение работы по удалению молекул на такие расстояния, что силы притяжения окажутся неспособными удерживать молекулы неподалёку друг от друга, и жидкость будет переходить в газообразное состояние.

График кипения

Рассмотрим графическое представление процесса нагревания жидкости - так называемый график кипения (рис. 4 ).

Рис. 4. График кипения

Участок предшествует началу кипения. На участке жидкость кипит, её масса уменьшается. В точке жидкость выкипает полностью.

Чтобы пройти участок , т.е. чтобы жидкость, доведённую до температуры кипения, полностью превратить в пар, к ней нужно подвести некоторое количество теплоты . Опыт показывает, что данное количество теплоты прямо пропорционально массе жидкости:

Коэффициент пропорциональности называется удельной теплотой парообразования жидкости (при температуре кипения). Удельная теплота парообразования численно равна количеству теплоты, которое нужно подвести к 1 кг жидкости, взятой при температуре кипения, чтобы полностью превратить её в пар.

Так, при удельная теплота парообразования воды равна кДж/кг. Интересно сравнить её с удельной теплотой плавления льда ( кДж/кг) - удельная теплота парообразования почти в семь раз больше! Это и не удивительно: ведь для плавления льда нужно лишь разрушить упорядоченное расположение молекул воды в узлах кристаллической решётки; при этом расстояния между молекулами остаются примерно теми же. А вот для превращения воды в пар нужно совершить куда большую работу по разрыву всех связей между молекулами и удалению молекул на значительные расстояния друг от друга.

График конденсации

Процесс конденсации пара и последующего остывания жидкости выглядит на графике симметрично процессу нагревания и кипения. Вот соответствующий график конденсации для случая стоградусного водяного пара, наиболее часто встречающегося в задачах (рис. 5 ).

Рис. 5. График конденсации

В точке имеем водяной пар при . На участке идёт конденсация; внутри этого участка - смесь пара и воды при . В точке пара больше нет, имеется лишь вода при . Участок - остывание этой воды.

Опыт показывает, что при конденсации пара массы (т. е. при прохождении участка ) выделяется ровно то же самое количество теплоты , которое было потрачено на превращение в пар жидкости массы при данной температуре.

Давайте ради интереса сравним следующие количества теплоты:

Которое выделяется при конденсации г водяного пара;
, которое выделяется при остывании получившейся стоградусной воды до температуры, скажем, .

Дж;
Дж.

Эти числа наглядно показывают, что ожог паром гораздо страшнее ожога кипятком. При попадании на кожу кипятка выделяется «всего лишь» (кипяток остывает). А вот при ожоге паром сначала выделится на порядок большее количество теплоты (пар конденсируется), образуется стоградусная вода, после чего добавится та же величина при остывании этой воды.

  • ТЕРМОДИНАМИКА
  • ФАЗОВЫЕ ПЕРЕХОДЫ
  • ПОТЕНЦИАЛ ГИББСА
  • УРАВНЕНИЯ ЭРЕНФЕСТА
  • МОДЕЛЬ ИЗИНГА
  • СВЕРХТЕКУЧЕСТЬ

В статье изложена теория фазовых переходов второго рода, условия, характеристики и суть процесса. С практической точки зрения изучение объекта позволяет предсказывать свойства одних фаз вещества по характеристикам других.

  • Возникновение и определение понятия квантовой телепортации
  • Ассортиментная политика сети супермаркетов «Барс» в городе Рязани
  • Сравнительный анализ программных продуктов оценки инвестиционных проектов

Введение

Фазовым в термодинамике называется переход вещества из одной термодинамической фазы в другую при изменении внешних условий (температуры, давления, магнитного и электрического полей и т. д.). Различают фазовые переходы двух видов:

  1. Фазовые переходы первого рода. Характеризуются скачкообразным изменением таких термодинамических характеристик вещества, как плотность и концентрация в зависимости от температуры и давления. При этом в единице массы выделяется или поглощается определенное количество теплоты (теплоты перехода). Поскольку энергия и объем являются первыми производными от свободной энергии по температуре и давлению, то при этих фазовых переходах первые производные свободной энергии являются разрывной функцией (отсюда следует название). Примерами таких переходов являются плавление и кристаллизация, испарение и конденсация, сублимация и десублимация.
  2. Фазовые переходы второго рода. В этом случае плотность и внутренняя энергия не меняются, вследствие чего визуально такой фазовый переход может не наблюдаться.

Если система является однокомпонентной, то понятие фазы совпадает с понятием агрегатного состояния вещества; таким образом, превращения первого рода являются более «очевидными»: они сопровождаются выделением тепла и изменением физических характеристик (формы, объема). А что происходит при фазовых переходах второго рода?

Фазовые переходы второго рода

Удельный термодинамический потенциал остается непрерывным при любых переходах, но его производные могут испытывать разрыв непрерывности. Фазовые превращения, при которых первые производные той же функции остаются непрерывными, а вторые производные меняются скачкообразно, называются фазовыми превращениями второго рода.

Фазовые переходы обнаруживают по изменению свойств и особенностям характеристик вещества в момент фазового перехода. Какая из фаз вещества устойчива при тех или иных условиях, определяется одним из термодинамических потенциалов. При заданной температуре и объеме - это свободная энергия Гельмгольца F(V, T), при заданной температуре и давлении - потенциал Гиббса G(T, р). Потенциал Гельмгольца F - это разность между внутренней энергией вещества Е и его энтропией S, умноженной на абсолютную температуру Т:

И энергия, и энтропия в (1) являются функциями внешних условий (давления p и температуры Т), а фаза, которая реализуется при определенных внешних условиях, обладает наименьшим из всех возможных фаз потенциалом Гиббса. При изменении внешних условий может оказаться, что свободная энергия другой фазы стала меньше. Изменение внешних условий всегда происходит непрерывно, и поэтому его можно описать некоторой зависимостью объема системы от температуры V = f (T). Учитывая это согласование в значениях Т и V, можно сказать, что смена стабильности фаз и переход вещества из одной фазы в другую происходят при определенной температуре Т 0 на термодинамическом пути V = f (T), а значения F (T, V (T)) для обеих фаз являются функциями температуры вблизи этой точки F t = Fi(To,T).

Вблизи Т 0 зависимость F j (T, V(T)) для одной и F 2 (T, V(T)) для другой фазы можно приблизить полиномами, зависящими от разности температур Т - Т 0 .

Разность между свободными энергиями двух фаз принимает вид

Пока разность Т - Т 0 достаточно мала, можно ограничиться только первым слагаемым и утверждать, что если a 1 > а 2 , то при низких температурах (Т < T 0) стабильна фаза I, при высоких температурах - фаза II. В самой точке перехода (Т = Т 0) первая производная свободной энергии по температуре испытывает скачок: при Т < Т 0 dF/dT = а 1 , при Т > Т 0 dF/dT = а 2 . По определению, dF/dT - это энтропия вещества. Следовательно, при фазовом переходе энтропия испытывает скачок, определяя теплоту перехода Q, так как Q = (S 1 - S 2)/T. Это и есть переходы первого рода.

Однако возможно, что совпадут не только свободные энергии, но и их производные по температуре, то есть a1 = a2 . Такая температура не должна быть выделенной; действительно, при F 1 (T 0) = F 2 (T 0) и а 1 = а 2 в первом приближении по отношению к Т - Т 0:

и в этой точке фазовый переход не произойдет: тот потенциал Гиббса, который был меньше при Т < T 0 , будет меньше и при Т > Т 0 . Но иногда существуют причины для того, чтобы при Т = Т 0 одновременно выполнялись F 1 (T 0) = F 2 (T 0) и a 1 = a 2 . Тогда фаза I становится неустойчивой относительно внутренних степеней свободы при T > T 0 , а фаза II - при Т < Т 0 . В этом случае и происходят переходы второго рода. Название связано с тем, что при переходах второго рода происходит скачок только второй производной потенциала Гиббса по температуре, а вторая производная свободной энергии по температуре определяет теплоемкость вещества.

Таким образом, при переходах второго рода должен наблюдаться скачок теплоемкости вещества, но не должно происходить выделение теплоты.

В чем же причины необходимых условий перехода второго рода? Дело в том, что и при T > T 0 и при Т < Т 0 существует одно и то же вещество. Взаимодействия между элементами, его составляющими, не изменяются скачком, это и есть физическая природа того, что термодинамические потенциалы для обеих фаз не могут быть независимыми.

Уравнения Эренфеста

Фазовые переходы первого рода характеризуются уравнением Клапейрона-Клаузиуса (квазистатические процессы перехода вещества). Согласно уравнению, теплота фазового перехода (например, теплота плавления) определяется выражением:

Между температурой фазового перехода и внешним давлением существует функциональная связь: при фазовом переходе производная (dp / dV) т терпит разрыв. Для фазовых переходов второго рода уравнение Клапейрона- Клаузиуса не применимо, так как из условия равенства первых производных удельного термодинамического потенциала

(7.1)

(7.2)

следует равенство удельных энтропий и объемов: s 1 = s 2 , V 1 = V 2 .

Это приводит к тому, что в правой части уравнения одновременно обращаются в нуль числитель и знаменатель, и в уравнении Клапейрона- Клаузиуса возникает неопределенность вида 0/0.

Найдем полные дифференциалы удельных энтропий и объемов, и в соответствии с формулами (7.1) и (7.2) приравняем их

Проведем преобразование полученных выражений. Производная удельной энтропии по температуре в обратимом процессе может быть представлена в виде

(10)

где q - удельная теплота, с р - удельная изобарическая теплоемкость.

Так как для второй производной удельного термодинамического потенциала может быть записано равенство:

, то , и тогда (11)

(12)

Полученные выражения позволяют записать уравнения, связывающие производную давления от температуры dP/dT (наклон кривой равновесия) со скачками удельной изобарической теплоемкости c p и величин (dV / dT) и (dV / dp) T , связанных с температурным коэффициентом объемного расширения и коэффициентом изотермической сжимаемости

, (14)

Эти уравнения называются уравнениями Эренфеста , и они имеют вид

, (15)

Модель Изинга

Главный принцип процесса фазового перехода - максимальная вероятность: в природе реализуется только наиболее вероятное состояние ансамбля частиц. Охарактеризуем состояние системы энергией E каждой возможной конфигураций частиц и числом конфигураций с этой энергией W(E). Вероятность реализации состояния ансамбля Р(Е) по формуле Гиббса равна

(16)

где k - постоянная Больцмана, Т - абсолютная температура. Свободная энергия Гиббса F пропорциональна lnP(E). Чтобы определить, какое состояние реализуется, нужно найти максимум P(E), где Е зависит от набора внутренних обобщенных координат: положений атомов, ориентации их моментов, структуры и т.д.

Модель Изинга представляет собой модель кристалла с атомами, зафиксированными в неподвижных узлах кристаллической решетки. Каждому атому приписываются несколько возможных дискретных состояний (степеней свободы). В оригинальной модели Изинга возможных состояний атома два (соответствуют магнитному моменту, который может иметь направления вверх и вниз на плоской квадратной решетке). Функция F для модели должна быть минимальна в равновесном состоянии. Найдем свободную энергию для модели Изинга как функцию температуры. Так как учитываются только двухчастичные изотропные взаимодействия ближайших соседей, средняя энергия подсистемы моментов во внешнем поле H ex может быть записана в виде

где V - энергия взаимодействия соседних атомов, a ij = 1, если i и j - ближайшие соседи и a ij = 0 во всех остальных случаях. Полагая верным приближение = и факт, что упорядочение моментов будет ферромагнитным (после упорядочения все моменты будут направлены в одну сторону), определим эффективное поле, действующее на каждый атом со стороны окружающих:

, (18)

где n = - параметр порядка.

В этих приближениях состояния всех атомов независимы, значит можно подсчитать число способов реализации конфигураций с заданной энергией. Вероятность направления момента вверх или вниз на одном атоме в принятом приближении среднего поля не влияет на его реализацию в другом атоме. Вероятность независимых событий для таких моментов равна произведению вероятностей того или иного состояния атома, а по свойствам логарифмов (логарифм произведения равен сумме логарифмов), получаем:

где ,

Произведем приближенный расчет F при вычислении внутренней энергии E = -NVr 2 - NrjH^. При подсчете вероятности состояния с данной энергией считается, что W, как и Е, определяется средним значением момента n, W - число способов, которыми можно реализовать значение п = (N 1 - N 2)/ N, N - число узлов решетки, а N 1 и N 2 - число моментов, направленных по и против внешнего поля: N = N 1 +N 2 . Ясно, что число способов размещения N 1 по N узлам:

По формуле Стирлинга при m→∞ln m! = m(ln m -1), и тогда

Учитывая взаимообратность функций логарифмирования и экспоненцирования, можно утверждать, что уравнение состояния n, приближенно определяющее F(n), эквивалентно уравнению приближенного определения поля в первом случае. Итак, уравнения (6) или (8), будучи подставлены в (5) или (7), дадут одни и те же равновесные значения F (T) для обеих фаз; для обоих методов вычисления F модели Изинга из равенства F1(T) = F2(T) следует а1 = а2.

Теория Ландау

Из приведенных вычислений видно, что при приближенных подсчетах потенциала Гиббса для модели Изинга на промежуточных этапах возникает потенциал, минимумы которого соответствуют потенциалам Гиббса разных фаз. Эта функция - потенциал Ландау - должна существовать всегда, когда структуры фаз близки между собой. Его можно ввести в рассмотрение, если в перестройке структуры при переходе из одной фазы в другую участвует ограниченное число степеней свободы кристалла (в описанном примере модели Изинга параметром порядка является плотность ферромагнитного момента кристалла).

Теория Ландау основана на представлении о связи фазового перехода второго рода с изменением группы симметрии физической системы. Л. Д. Ландау предположил, что свободная энергия любой системы должна удовлетворять двум условиям: быть аналитической функцией и соблюдать симметрии гамильтониана. Тогда (в окрестности критической температуры T 0) термодинамический потенциал Гиббса можно разложить по степеням параметра порядка:

где а, в - коэффициенты разложения, п - параметр порядка, t = T - T 0 , h - напряженность поля. С учетом модели Изинга, свободная энергия может быть записана следующим образом:

Где . (23)

В этой теории Ландау впервые применил понятие параметра порядка - термодинамическую величину, характеризующую дальний порядок в среде, возникающий в результате спонтанного нарушения симметрии.

Итак, в точке перехода появляется параметр порядка, равный нулю в менее упорядоченной фазе и изменяющегося от нуля до ненулевых значений в более упорядоченной фазе. Вследствие чего изменение симметрии тела при фазовом переходе второго рода обладает следующим общим свойством: симметрия одной из фаз является более высокой по отношению к другой фазе (тогда как при фазовом переходе первого рода изменение симметрии тела не подчинено никаким ограничениям). В большинстве случаев более симметричная фаза соответствует более высоким температурам, а менее симметричная - более низким. В частности, переход второго рода из упорядоченного в неупорядоченное состояние происходит всегда при повышении температуры (исключение - точка Кюри сегнетовой соли, ниже которой кристалл относится к ромбической, а выше - к моноклинной системе).

С существованием неравновесного потенциала Ландау связаны некоторые свойства фазовых переходов второго рода. Например, при переходах второго рода не имеет место правило фаз Гиббса: в одной точке на фазовой р-Т диаграмме не может сосуществовать более трех фаз одного вещества. При выводе правила фаз существенно используется предположение о независимости их потенциалов Гиббса. При переходах второго рода потенциалы граничащих фаз не независимы. Поэтому сосуществование более трех фаз невозможно, а граничить в одной точке перехода второго рода могут и более трех фаз.

Некоторые примеры фазовых переходов второго рода

Наиболее иллюстративным примером фазового перехода второго рода является превращение жидкого Не I в жидкий Не II при температуре 2,2 К и ниже. С этим фазовым переходом связано квантовое явление сверхтекучести, возникающее в Не II. Это явление было открытое в 1938 г. П. Л. Капицей и теоретически объяснено советским физиком-теоретиком Л. Д. Ландау.

Теория сверхтекучести основывается на предложении о том, что Не II представляет собой смесь двух жидкостей, хотя с точки зрения квантовой физики атомы Не II нельзя разделить на два различных вида. Однако классическая аналогия наиболее удобна для восприятия и согласно ей одна компонента Не II является сверхтекучей, а другая - нормальной (не сверхтекучей). Таким образом течение Не II можно представить в виде потоков двух жидкостей, при этом вязкость сверхтекучей компоненты равна нулю.

Именно в отсутствии вязкости у Не II и состоит явление сверхтекучести. Отсутствие вязкости приводит к тому, что Не II может проникать через очень узкие капилляры (П.Л. Капица ставил опыты по протеканию Не II между двумя шлифованными стеклами), а также к тому, что уровни Не II, налитого в два разделенных перегородкой сосуда, постепенно выравниваются из-за образования ползущей пленки (см. рис. 7.12).

Ползущая пленка имеет толщину менее 10" м. При ее движении со скоростью несколько десятков сантиметров в секунду жидкость перетекает из одного сосуда в другой.

Нормальная компонента переносит при своем движении теплоту, а сверхтекучая компонента - нет. При протекании Не II через узкую щель, перетекает главным образом сверхтекучая часть Не II. Поэтому вытекающий Не II должен иметь более низкую температуру, чем Не II в сосуде из которого происходит вытекание. Это явление было использовано для получения сверхнизких температур, составляющих десятые доли кельвина.

К фазовым переходам второго рода относятся также переход некоторых веществ в сверхпроводящее состояние при низких температурах. Такой переход сопровождается падением до нуля электрического сопротивления сверхпроводников. Примером фазового перехода второго рода является переход железа из ферромагнитного в парамагнитное состояние в точке Кюри. К ним относятся также переходы, связанные с изменением симметрии кристаллической решетки, в тех случаях, когда тип симметрии решетки при переходе становится другим (например, переход от кубической к тетрагональной решетке).

При фазовом переходе второго рода все свойства вещества изменяются непрерывным образом во всем объеме вещества. Поэтому при их протекании невозможно существование метастабильных состояний, характерных для фазовых переходов первого рода.

Заключение

Представление о переходах второго рода имеет обширное практическое значение: во многих случаях оно оказывается продуктивным при предсказании свойств одних фаз вещества по характеристикам других его фаз.

В начале работы было замечено, что существует два вида фазовых переходов. Но стоит упомянуть, что современная физика исследует также системы, обладающие фазовыми переходами третьего или более высокого рода. В последнее время, например, широкое распространение получило понятие квантовый фазовый переход, т.е. фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста.

Список литературы

  1. Гуфан Ю. М.. Термодинамическая теория фазовых переходов. Ростов н/Д: Издательство Ростовского университета, 1982.
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. М.: Физматлит, 2002. Т.5. Статистическая физика. Часть 1. 5-е издание.
  3. Паташинский А. З., Покровский В. Л. Флуктуационная теория фазовых переходов, М.: Наука, 1981.
  4. Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. М.: Физматлит, 2002.

Copyright © 2024. Ремонт и отделка. Декор. Двор и сад. Строительство дома. Остекление. Дизайн. Двери