Утепление

Затухающие колебания. Затухающие и вынужденные колебания Колебательное движение

Затухающие колебания. Затухающие и вынужденные колебания Колебательное движение

«Физика - 11 класс»

В современной физике существует специальный раздел - физика колебаний , которая занимается исследованием вибраций машин и механизмов.

Механические колебания

Механические колебания - это движения, которые точно или приблизительно повторяются через определенные интервалы времени.
Примеры колебаний: движения поршней в двигателе автомобиля, поплавка на волне, ветки дерева на ветру.

Колебательные движения, или просто колебания - это повторяющиеся движения тел.

Если движение повторяется точно, то такое движение называется периодическим .

Что является характерным признаком колебательного движения?
При колебаниях движения тела повторяются .
Так, маятник, совершив один цикл колебаний, вновь совершает такой же цикл и т.д.

Маятником называют подвешенное на нити или закрепленное на оси тело, которое может совершать колебания под действием силы тяжести Земли.


Примеры маятников:

1. Пружинный маятник - груз, подвешенный на пружине.
В состоянии равновесия пружина растянута, и сила упругости уравновешивает силу тяжести, действующую на шарик. Если вывести шарик из положения равновесия, слегка оттянув его вниз и отпустить, то он начнет совершать колебательные движения.

2. Нитяной маятник - груз, подвешенный на нити.
В положении равновесия нить вертикальна и сила тяжести, действующая на шарик, уравновешивается силой упругости нити. Если шарик отклонить и затем отпустить, то он начнет колебаться (качаться) из стороны в сторону.

Колебания бывают свободными затухающими и вынужденными.

Свободные колебания.

Группу тел, движение которых изучают, называют в механике системой тел .
Внутренние силы - это силы, действующие между телами системы.
Внешние силы - это силы, действующие на тела системы со стороны тел, не входящих в нее.

Самый простой вид колебаний - свободные колебания.

Свободными колебаниями называются колебания в системе под действием внутренних сил, после того как система выведена из положения равновесия и предоставлена затем самой себе.

Примеры свободных колебаний: колебания груза, прикрепленного к пружине, или груза, подвешенного на нити.

Затухающие колебания.

После выведения системы из положения равновесия создаются условия, при которых груз колеблется без воздействия внешних сил.
Однако с течением времени колебания затухают, так как на тела системы всегда действуют силы сопротивления.
Под действием внутренних сил и сил сопротивления система совершает затухающие колебания .

Вынужденные колебания.

Для того чтобы колебания не затухали, на тела системы должна действовать периодически изменяющаяся сила.
Постоянная сила не может поддерживать колебания, так как под действием этой силы может измениться только положение равновесия, относительно которого происходят колебания.

Вынужденными колебаниями называются колебания тел под действием внешних периодически изменяющихся сил.

Наибольшее значение в технике имеют вынужденные колебания.

Тема 17 Затухающие и вынужденные колебания

1 Затухающие колебания. Величины их характеризующие.

2 Вынужденные колебания.

3 Резонанс.

Основные понятия по теме

При наличии в системе диссипативных сил амплитуда колебаний убывает с течением времени. Такие колебания принято называть затухающими колебаниями . Формально это означает, что в уравнение движения тела, совершающего свободные колебания, при описании затухающих колебаний, необходимо добавить слагаемые учитывающие диссипативные силы. В первом приближении величину этих сил принято считать пропорциональной скорости движения тела. В этом случае уравнение движения пружинного маятника (16.1) принимает вид

где коэффициент сопротивления.

Разделив обе части уравнения (17.1) на , перепишем его в виде

. (17.2)

В выражении (17.2) введены общепринятые обозначения собственная частота колебаний и коэффициент затухания.

Решение уравнения (17.2) имеет вид

Здесь частота затухающих колебаний, их начальная фаза. Функция описывает убывание амплитуды затухающих колебаний с течением времени. График зависимости смещения частицы из положения равновесия приведен на рисунке 17.1. Из вида приведенного графика следует принципиальный вывод – затухающие колебания являются негармоническими . Следовательно, величины используемые ранее для описания свободных колебаний, при описании затухающих колебаний непригодны. Исключение составляет только начальная фаза колебаний , так как она определяет начальные условия возбуждения колебаний и не связана с их дальнейшим поведением во времени.

Затухающие колебания принято характеризовать следующими величинами:

время релаксации колебаний. Время релаксации затухающих колебаний – это время, в течении которого их амплитуда уменьшается в раз;

коэффициент затухания, который характеризует диссипативные силы в системе. Коэффициент затухания связан с временем релаксации очевидным соотношением

и, следовательно, имеет размерность ;

декремент затухания. Декремент затухания показывает, во сколько раз амплитуда затухающих колебаний убывает за время одного полного колебания, то есть

; (17.5)

логарифмический декремент затухания; (17.6)

добротность колебательной системы, характеризующая ее энергетические потери за время одного полного колебания. Добротность

, (17.7)

где энергия, запасенная в системе в момент времени , потери энергии за время одного полного колебания.

Введенные выше понятия полностью характеризуют затухающие колебания, то есть описывают поведение кривых представленных на рисунке 17.1 в зависимости от времени. Обратное утверждение также является верным. Имея график зависимости , полученный экспериментально, можно определить все вышеназванные величины характеризующие затухающие колебания.

В реальных ситуациях затухание колебаний является неизбежным, но вредным явлением. Устранить его проявления в рассматриваемой колебательной системе можно, если в число сил, под действием которых происходят колебания, дополнительно включить вынуждающие силы, приводящие к компенсации потерь энергии в колебательной системе. Из основного условия, содержащегося в определении колебаний, «повторяемость во времени» следует, что вынуждающая сила должна иметь периодический характер

. (17.8)

В выражении (17.8) амплитуда вынуждающей силы, ее частота.

При добавлении вынуждающей силы в уравнение движения (17.1), последнее, приобретая внешний вид

, (17.9)

одновременно приобретает и качественно новое математическое свойство. В отличие от уравнений (16.1) и (17.1) уравнение (17.9) является неоднородным дифференциальным уравнением. Установившиеся вынужденные колебания описывает только частное решение неоднородного дифференциального уравнения (17.9), которое имеет вид

Из (17.10) следует, что вынужденные колебания, так же как и свободные, являются гармоническими. Однако они отличаются от свободных колебаний рядом особенностей. Во первых, как ясно из выражения (17.10), частота вынужденных колебаний равна частоте вынуждающей силы, то есть вынуждающая сила навязывает колебательной системе свою частоту. Во вторых, амплитуда вынужденных колебаний

Рассмотрим колебания маятника при наличии сил трения. Кроме возвращающей силы здесь появляется сила трения, которую будем считать пропорциональной скорости:

где r - коэффициент трения.

В этом случае уравнение колебаний принимает вид

Введем обозначения:

где - коэффициент затухания.

Тогда уравнение колебаний приводится к виду

Решение этого уравнения

где - частота колебаний при наличии затухания. Выражение

называют амплитудой затухающих колебаний. Зависимость x(t) имеет вид


Временем релаксации называется величина ф=1/д. Амплитуду затухающих колебаний запишем в виде

При t = ф амплитуда уменьшается в е раз.

Для характеристики затухающих колебаний вводят различные величины. Рассмотрим некоторые из них.

Логарифмическим декрементом затуханий называется величина, равная логарифму отношения амплитуд колебаний, отличающихся на период.

Период затухающих колебаний.

Часто используется также величина

называемая добротностью.

Для амплитуды колебаний можно записать

Учитывая формулу

можно записать

где - число колебаний, совершаемое маятником за время, когда амплитуда колебаний уменьшается в раз.

Вынужденные колебания

Рассмотрим случай, когда на маятник действует внешняя сила

Уравнение колебаний в этом случае имеет вид

Решение уравнения вынужденных колебаний запишем в виде

общее решение однородного уравнения,

частное решение неоднородного уравнения. Здесь

угол сдвига фаз,

амплитуда, которая зависит от частоты приложенного напряжения.

Функция описывает собственные колебания маятника. Эти колебания не зависят от внешней силы, имеют затухающий характер и спустя время почти исчезают.

Функция описывает вынужденные колебания, создаваемые внешними силами. Это незатухающие колебания с частотой внешнего возбуждения.

Нетрудно показать, что максимальное значение амплитуды достигается при частоте

которая называется резонансной, а само явление возрастания амплитуды вынужденных колебаний при определенной частоте называется резонансом. Резонансная кривая имеет вид, показанный на рисунке.

При резонансной частоте амплитуда колебаний возрастает во много раз. Явление резонанса следует учитывать при строительстве зданий, сооружений, машин. Собственная частота колебаний этих объектов должна быть далека от частоты вынужденных колебаний, которым могут подвергаться эти объекты. В противном случае возникают вибрации большой амплитуды, которые могут вызвать катастрофу. Такие случаи неоднократно отмечались.

Вместе с тем явления резонанса могут быть очень полезными, когда требуется многократное усиление необходимых колебаний. Это явление широко используется в радиотехнике, акустике, при создании сверхточных приборов.

Важную роль в технике играют автоколебания. Автоколебаниями называют незатухающие колебания, поддерживаемые в диссипативной системе за счет постоянного внешнего источника энергии, причем свойства этих колебаний определяются самой системой.

Примеры автоколебаний: часы, ламповые генераторы, двигатели внутреннего сгорания и пр. Строгая теория автоколебательных систем очень сложна, т.к. такие системы описываются нелинейными дифференциальными уравнениями, и в большинстве случаев получить строгое аналитическое решение таких уравнений не удается.

19. Затухающие колебания.

Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Затухание механических колебаний вызывается главным образом трением. Затухание в электрических колебательных системах вызывается тепловыми потерями и потерями на излучение электромагнитных волн, а также тепловыми потерями в диэлектриках и ферромагнетиках вследствие электрического и магнитного гистерезиса.

Закон затухания колебаний определяется свойствами колебательных систем.

Система называется линейной, если параметры, характеризующие те физические свойства системы, которые существенны для рассматриваемого процесса, не изменяются в ходе процесса.

Линейные системы описываются линейными дифференциальными уравнениями.

Различные по своей природе линейные системы описываются одинаковыми уравнениями , что позволяет осуществлять единый подход к изучению колебаний различной физической природы.

20.Дифференциальное уравнение свободных затухающих колебаний линейной системы

Дифференциальное уравнение свободных затухающих колебаний

линейной системы имеет вид

где s- колеблющаяся величина,

- коэффициент затухания,

ω 0 - циклическая частота свободных незатухающих колебаний той же колебательной системы (при ).

В случае малых затуханий ( ) решение этого уравнения:

- амплитуда зату­хающих колебаний,

А 0 - начальная амплитуда,

- циклическая частота затухающих колебаний.

Промежуток времени , в течение которого амплитуда затухающих о

колебаний уменьшается в е раз называется временем релаксации.



Затухание нарушает периодичность колебаний.

Затухающие колебания не являются периодическими.

Однако если затухание мало, то можно условно пользоваться понятием периода затухающих колебаний как промежутка времени между двумя последующими максимумами колеблющейся физической величины:

Если A(t) и A(t + T) - амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающихся на период, то отношение

называется декрементом затухания, а его логарифм

называется логарифмическим декрементом затухания.

Здесь N - число колебаний, совершаемых за время уменьшения амплитуды в е раз.

22.Добротность колебательной системы.

Добротностью колебательной системы называется безразмерная величина Q, равная произведению на отношение энергии W(t) колебаний системы в произвольный момент времени t к убыли этой энергии за промежуток времени от t до t + T (за один условный период затухающих колебаний):

Энергия W(t) пропорциональна квадрату амплитуды А(t), поэтому:

При малых значениях логарифмического декремента затухания ( << 1)

Поэтому (принимая Т ≈Т 0)

Волны в упругой среде.

23.Волновой процесс.

Если возбудить колебания в какой-либо точке среды (твердой, жидкой или газообразной) то, вследствие взаимодействия между частицами среды, эти колебания будут передаваться от одной точки среды к другой со скоростью, зависящей от свойств среды.

При рассмотрении колебаний не учитывается детальное строение среды; среда рассматривается как сплошная, непрерывно распределенная впространстве и обладающая упругими свойствами.

Среда называется линейной, если ее свойства не изменяются под действием возмущений, создаваемых колебаниями.

Волновым процессом или волной - называется процесс распро­странения колебаний в сплошной среде.

При распространении волны частицы колеблются около своих положений равновесия, а не перемещаются вслед за волной.

Вместе с волной от частицы к частице передается только состояние колебательного движения и его энергия.

Основным свойством всех волн является перенос энергии без переноса вещества .

24.Упругие волны.

Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде.

Продольная волна - волна, в которой частицы среды колеблются в направлении распространения волны .

Поперечная волна - волна, в которой частицы среды колеблются в плоскостях, перпендикулярных направлению распространения волны .

Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформации сжатия и растяжения (в твердых, жидких и газообразных телах).

Поперечные волны могут распространяться только в среде, в которой возникают упругие силы при деформации сдвига (только в твердых телах).

36. Упругая гармоническая волна.

Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими.

Пусть гармоническая волна распространяется со скоростью υ вдоль оси ОХ. Обозначим смещения частиц среды через

Для данного момента времени t зависимость между смещением частиц среды и расстоянием х этих частиц от источника колебаний О можно представить в виде графика волны.

Отличие графика волны от графика гармонического колебания:

1) график волны представляет зависимость смещения всех частиц среды от расстояния до источника колебаний вданный момент времени ;

2) график гармонического колебания это зависимость смещения данной частицы от времени

Длиной волны λ называется расстояние между ближайшими частицами, колеблющимися в одинаковой фазе.

Длина волны равна расстоянию, на которое распространяется гармоническая волна за время, равное периоду колебаний Т:

где п - частота колебаний, υ - скорость распространения волны.

Волновым фронтом называется геометрическое место точек, до которых доходят колебания к определенному моменту времени t.

Волновой поверхностью называется геометрическое место точек, колеблющихся в одинаковой фазе.

Волновых поверхностей можно провести бесчисленное множество, а волновой фронт в каждый момент времени - один.

37.Бегущие волны.

Бегущими волнами называются волны, которые переносят в пространстве энергию.

Перенос энергии количественно характеризуется вектором плотности потока энергии (вектор Умова ). Направление этого вектора совпадает с направлением распространения энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно волне.

Важными примерами бегущих волн являются плоская и сферическая волны.

Волна называется плоской, если ее волновые поверхности представляют совокупность плоскостей, параллельных друг другу.

Волна называется сферической, если ее волновые поверхности имеют вид концентрических сфер. Центры этих сфер называются центром волны.

25.Уравнение плоской волны.

Пусть точки, которые расположены в плоскости х = 0, колеблются по закону . И пусть υ- скорость распространения колебаний в данной среде.

Колебания частицы В среды (см. рисунок), расположенной на расстоянии х от источника колебаний О, будут происходить по тому же закону. Но, поскольку для прохождения волной расстояния х требуется время , то ее колебания будут отставать по времени от колебания источника на τ.

Уравнение колебаний частиц, лежащих вплоскости х, имеет вид

Следовательно, функция является не только периодической функцией времени , но и периодической функцией координаты х.

В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид

здесь: А = const - амплитуда волны,

ω - циклическая частота,

- начальная фаза волны,

- фаза плоской волны.

Если определить волновое число:

то уравнение плоской бегущей волны можно записать в виде

или в экспоненциальной форме

где физический смысл имеет только вещественная часть.

В общем виде уравнение плоской волны, распространяющейся в направлении имеет вид:

25.Фазовая скорость.

Скорость в этих уравнениях есть скорость распространения фазы волны и ее называют фазовой скоростью.

Действительно, пусть в волновом процессе фаза постоянна:

26. Уравнение сферической волны.

где r - расстояние от центра волны до рассматриваемой точки среды. Амплитуда колебаний в сферической волне убывает с расстоянием по закону .

27 . Волновое уравнение.

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением - дифференциальным уравнением в частных производных:

или

где υ - фазовая скорость,

- оператор Лапласа.

Решением волнового уравнения является уравнение любой волны (в том числе и плоская и сферическая волны).

Волновое уравнение для плоской волны, распространяющейся вдоль оси х :

28.Принцип суперпозиции.

Если среда, в которой распространяется одновременно несколько волн, линейна, то к этим волнам применим принцип суперпозиций (наложения) волн:

при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвующие в каждом из слагающих волновых процессов.

29.Групповая скорость.

Любое сложное колебание может быть представлено в виде суммы одновременно совершающихся гармонических колебаний (разложение Фурье).

Поэтому любая волна может быть представлена в виде суммы гармонических волн, то есть в виде волнового пакета или группы волн.

Волновым пакетом называется суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства.

За скорость распространения волнового пакета принимают скорость перемещения максимума его амплитуды (центра волнового пакета).

Групповой скоростью и называется скорость движения группы волн, образующих в каждый момент времени локализованный в пространстве волновой пакет (или скорость движения центра волнового пакета).

Ее величина

Связь групповой и фазовой скоростей:

30. Интерференция волн.

Когерентностью называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.

Две волны называются когерентными , если разность их фаз не зависит от времени.

Гармонические волны, имеющие одинаковую частоту, когерентны всегда.

Интерференцией волн называется явление наложения волн , при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других в зависимости от соотношения между фазами этих волн.

Рассмотрим наложение двух когерентных сферических волн, возбуждаемых точечными источниками, колеблющимися с одинаковыми амплитудой , частотой ωи постоянной разностью фаз:

,

где и - расстояния от источников до рассматриваемой точки, k -

волновое число, - начальные фазы волн.

Амплитуда результирующей волны

Поскольку для когерентных источников , то результат интерференции двух волн зависит от величины , называемой разностью хода.

Интерференционный максимум наблюдается в точках, где

Числа называются порядком интерференционного максимума.

наблюдается в точках,

Интерференционный минимум наблюдается в точках, где .

Числа называются порядком интерференционного минимума.

31. Стоячие волны.

Особым случаем интерференции являются стоячие волны.

Стоячие волны - это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Пусть две плоские бегущие волны с одинаковыми амплитудами и частотами распространяются навстречу друг другу вдоль оси х :

,

Расстояния между двумя соседними узлами и между двумя соседними пучностями одинаковы и равны половине длины волны λ бегущих волн. Эту

величину называют длиной стоячей волны: .

В бегущей волне В стоячей волне
Амплитуда колебаний
все точки волны совершают колебания с одинаковой амплитудой разными амплитудами
Фаза колебаний
фаза колебаний зависит от коор­динаты х рассматриваемой точки все точки между двумя узлами колеблются с одинаковыми фазами
при переходе через узел фаза колебаний изменяется на π ; точки лежащие по разные стороны от узла колеблются в противофазе
Перенос энергии
энергия колебательного движе­ния переносится в направлении распространения бегущей волны переноса энергии нет, лишь впределах происходят взаимные превращения кинетической энергии в потенциальную и обратно

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн.

менее плотная пучность.

Если среда, от которой происходит отражение, более плотная , то на границе сред образуется узел стоячей волны.

32. Эффект Доплера.

Эффектом Доплера называется изменение частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга. В акустике эффект Доплера проявляется как повышение тона при приближении источника звука к приемнику и понижения тона звука при удалении источника от приемника.

Пусть источник и приемник звука движутся вдоль соединяющей их прямой; - скорости источника и приемника (положительны при сближении и отрицательны при удалении источника и приемника);

Скорость распространения колебаний υ зависит только от свойств среды, поэтому за время, равное периоду колебаний источника, излученная им волна пройдет в направлении к приемнику расстояние . Источник же пройдет расстояние . Поэтому к моменту окончания излучения волны длина волны в направлении движения сократится и станет . Частота колебаний которые воспринимает приемник, увеличится:


Затухающие колебания.

До сих пор мы рассматривали колебательное
движение тела так, как если бы оно происходило
совершенно беспрепятственно. Однако, если
движение происходит в какой либо среде, то эта
среда оказывает сопротивление движению,
стремящееся замедлить его. Взаимодействие тела
со средой представляет собой сложный процесс,
приводящий, в конце концов, к переходу энергии
движущегося тела в тепло,- как говорят в
физике, к рассеянию или диссипации энергии.
Этот процесс не является уже чисто
механическим и его детальное изучение требует
привлечения также и других разделов физики. С
чисто механической точки зрения он может быть
описан путем введения дополнительной (кроме
возвращающей) силы, появляющейся в результате
движения и направленной противоположно ему.
Эту силу называют силой трения. При достаточно
малых скоростях движения она пропорциональна
скорости тела, и ее проекция на ось х

где г - некоторая положительная постоянная,
характеризующая взаимодействие тела со средой,
а знак минус указывает, что сила направлена в
сторону, обратную скорости.

Выясним сначала, как влияет наличие такого
трения на колебательное движение. Будем считать
при этом, что сила трения настолько мала, что
вызываемая ею потеря энергии тела (за время
одного периода колебаний) относительно мала.










Запишем теперь второй закон Ньютона для

Деля это уравнение на m и перенося все члены
уравнения в левую часть, получим


2. Вынужденные колебания.

Во всякой реальной колебательной системе
всегда происходят те или иные процессы трения.
Поэтому свободные колебания, возникающие в
системе под влиянием начального толчка, с
течением времени затухают.

Для того, чтобы возбудить в системе
незатухающие колебания, необходимо

компенсировать потери энергии, обусловленные
трением. Такая компенсация может производиться
внешними (по отношению к колебательной
системе) источниками энергии. Простейшим
случаем является воздействие на систему
переменной внешней силы f BH , изменяющейся со
временем по гармоническому закону

в системе возникнут колебания, происходящие в
такт с изменением силы. Эти колебания
называются вынужденными. Движение системы
будет представлять собой, вообще говоря,
наложение обоих колебаний - собственных

система будет совершать лишь вынужденные
колебания.

Найдем уравнение вынужденных колебаний.
Для этого в уравнение (6.9) (второй закон
Ньютона) добавим вынуждающую силу (6.14):

Частота незатухающих колебаний. Полученное
уравнение называется уравнением затухающих
колебаний.
Оно переходит в уравнение


Деля (6.15) на m и вводя прежние обозначения,
получим

Это и есть уравнение вынужденных
колебаний. Поскольку вынужденные колебания
происходят с частотой Q, будем искать решение
уравнения (6.16) в виде

Для их нахождения воспользуемся методом,
который называется методом векторных
диаграмм,
удобным при сложении нескольких


то есть частота и период затухающих колебаний

В том случае, когда Р > со 0 (то есть движение
при достаточно большом трении), затухание
движения будет происходить монотонно без
колебаний. Такой процесс называется
апериодическим .


(на некотором вспомогательном чертеже -
векторной диаграмме) как проекцию на
горизонтальную ось ОХ радиуса - вектора,