Остекление

Сенсорные функции таламуса. Таламус: функции и строение

Сенсорные функции таламуса. Таламус: функции и строение

Развитие психиатрии и неврологии в современных условиях невозможно без глубоких знаний строения и функций мозга. Без понимания процессов, происходящих в этом органе, нельзя эффективно лечить болезни и возвращать людей к полноценной жизни. Нарушения на каком-либо этапе эмбриогенеза - генетические аномалии или расстройства, вследствие тератогенных влияний внешних факторов, - приводят к развитию органических патологий и непоправимым последствиям.

Важный отдел

Головной мозг - сложная структура организма. Он включает в себя различные элементы. Одним из важнейших отделов считается промежуточный. Он включает в себя несколько звеньев: таламус, гипоталамус, эпиталамус и мететаламус. Самыми основными считаются первые два.

Таламус: физиология

Этот элемент представлен как срединное симметричное образование. Оно расположено между средним мозгом и корой. Состоит элемент из 2-х отделов. Таламус - это образование, входящее в лимбическую систему. Он выполняет различные задачи. В период эмбрионального развития этот элемент считается самым крупным. Он фиксируется в так называемом переднем отделе, рядом с центром мозга. От него в кору во всех направлениях отходят нервные волокна. Медиальная поверхность формирует боковую стенку в третьем желудочке.

Ядра

Таламус - это часть сложного комплекса. Он сформирован из четырех частей. К ним относят: гипоталамус, эпиталамус, предталамус, а также дорсальный таламус. Последние два являются производными от промежуточной структуры. Эпиталамус состоит из шишковидного тала, треугольника и поводков. В этом участке располагаются ядра, задействованные в активации обоняния. Онтогенетическая природа эпиталамуса и периталамуса различна. В этой связи они рассматриваются как отдельные образования. В целом,включает в себя более 80 ядер.

Специфика

Таламус головного мозга включает в себя систему ламелей. Она сформирована миелинизированными волокнами и разделяет разные части образования. Прочие области определяются нейронными группами. К примеру, интраламинарными элементами, перивентрикулярным ядром и так далее. Структура элементов существенно отличается от основной таламической части.

Классификация

В каждом центре присутствуют свои ядра. Это обуславливает их значение для человеческого организма. Классификация ядер осуществляется в зависимости от их локализации. Выделяют следующие группы:

  1. Переднюю.
  2. Медиодорсальную.
  3. Средней линии.
  4. Дорсолатеральную.
  5. Вентролатеральную.
  6. Вентральную заднемедиальную.
  7. Заднюю.
  8. Интраламинарную.

Кроме этого, ядра подразделяют в зависимости от направленности действия нейронов на:

  1. Зрительные.
  2. Осуществляющие обработку тактильных сигналов.
  3. Слуховые.
  4. Регулирующие равновесие.

Типы центров

Выделяют релейные, неспецифические и ассоциативные ядра. Последние включают в себя огромное количество срединных и интраламинарных образований. В релейные ядра поступают сигналы, которые впоследствии проецируются в разные участки коры. К ним относят образования, которые передают первичные ощущения (вентрально-заднемедиальное, вентрально-постлатеральное, медиальное и латеральное коленчатые), а также участвующие в обратной связи импульсов мозжечка (боковые вентральные). Ассоциативные ядра большую часть импульсов получают от коры. Они проецируют их обратно для регуляции активности.

Нервные пути

Таламус - это образование, связанное с гиппокампом. Взаимодействие осуществляется через специальный тракт, в котором присутствуют свод и сосцевидные тела. К коре таламус подключается таламокортикальными лучами. Также присутствует путь, по которому передается информация о зуде, прикосновениях, температуре. Он проходит в спинном мозге. Здесь присутствует два отдела: вентральный и латеральный. По первому проходят импульсы о боли и температуре, по второму - о давлении и прикосновениях.

Кровоснабжение

Оно осуществляется от соединительной задней, нижнебоковых, боковой и средней хориоидальных, а также парамедиальных таламическо-гипоталамических артериальных сосудов. У некоторых людей обнаруживается анатомическая аномалия. Она представлена в виде артерии Першерона. В этом случае от отходит один ствол. Он обеспечивает кровью весь таламус. Это явление достаточно редкое.

Функции

За что отвечает таламус ? Это образование исполняет много задач. В целом таламус - это своего рода концентратор информации. Через него происходит ретрансляция между различными подкорковыми участками. Например, каждая чувствительная система, кроме обонятельной, использует таламические ядра, принимающие и передающие сигналы в соответствующие первичные области. Для зрительного участка входящие импульсы от сетчатки посылаются латеральным отделам посредством центра, проецирующего информацию на соответствующую зону коры в затылочном секторе. Особая роль принадлежит таламусу в процессе регуляции бодрствования и сна. Ядра, взаимодействующие с корой, образуют специфические цепи, связаны с сознанием. Активность и возбуждение также регулирует таламус. Повреждения этого образования обычно приводят к коме. Таламус связан с гиппокампом, выполняет определенные задачи при организации памяти. Считается, что его области подключаются к некоторым мезио-височным участкам. За счет этого обеспечивается дифференциация фамильярной и реколлективной памяти. Кроме этого, выдвигаются предположения, что таламус участвует и в нейронных процессах, необходимых при двигательной регуляции.

Патологии

Вследствие инсульта может развиться таламический синдром. Он проявляется односторонним жжением (жаром), ноющими ощущениями. Его часто сопровождают перепады настроения. Двусторонняя ишемия таламической области может спровоцировать достаточно серьезные нарушения. К ним, например, относят глазодвигательные расстройства. При закупорке артерии Першерона может произойти двусторонний инфаркт.

Ретикулярная формация таламуса

В центральном отделе ствола находится скопление клеток. Они переплетаются огромным числом волокон, отходящих во всех направлениях. Если рассматривать это образование под микроскопом, то оно выглядит как сети. Поэтому оно и было названо ретикулярной формацией. Нейронные волокна отходят к коре и формируют неспецифические пути. С их помощью поддерживается активность во всех участках ЦНС. Под воздействием формации усиливаются рефлексы. В этом скоплении происходит отбор сведений. В вышележащие участки поступает только новая и важная информация. Активность формации всегда находится на высоком уровне, поскольку через нее идут сигналы от всех рецепторов.

Нейроны

Они проявляют высокую чувствительность к фармакологическим средствам и гормонам. Такие препараты, как "Резерпин", "Аминазин", "Серпазил" и прочие способны снизить активность формации. В нейронах происходит взаимодействие восходящих и нисходящих сигналов. Импульсы находятся в постоянной циркуляции в цепях. За счет этого поддерживается активность. Она, в свою очередь, необходима для поддержания тонуса нервной системы. В случае разрушения формации, в особенности верхних ее участков, наступает глубокий сон, хотя афферентные сигналы продолжают поступать в кору по другим путям.

Красное ядро

Передние и задние бугры четверохолмия.

Мозжечок.

Белое вещество мозжечка – проводящие пути мозжечка. Среди БВ находятся ядра мозжечка. В мозжечок поступают сигналы от всех структур, связанных с движением. Там они обрабатываются, затем из мозжечка поступает огромный поток тормозных влияний на СМ.

Средний мозг – четверохолмие, черная субстанция, ножки мозга.

Передние бугры – первичная зрительная зона – формируют ориентировочный рефлекс на зрительный сигнал

Задние бугры – первичная слуховая зона – формируют ориентировочный рефлекс на звуковой сигнал

Функция - сторожевые рефлексы (ориентировочные)

Тонус скелетной мускулатуры

Перераспределение тонуса при изменении позы

Упорядочивать взаимоотношение между мышцами сгибателями и разгибателями

Децереберационная ригидность – повреждение красного ядра, резко повышается возбудимость/тонус более сильных мышц

Черная субстанция – источник дофамина

Тормозная функция базальных ганглиев, не дает возбуждать зоны больших полушарий

Тонус скелетных мышц, отвечающих за тонкие инструментальные движения

Пример дисфункции: болезнь Паркинсона

Таламус – поступают сигналы со всех рецепторов кроме обонятельного, его называют коллектором афферентный импульсов.

Прежде чем попасть в кору, информация поступает в таламус. Если таламус разрушен, то кора не получает эту информацию. Если в коленчатые тела (одни из ядер таламуса) поступают зрительные сигналы, то уходят сразу в затылочную долю коры полушарий. Тоже и со слуховой, только она идет в височную. В таламусе обрабатывается информация и выбирается наиболее адекватная

В таламусе десятки ядер, которые делятся на 2 группы: специфические и неспецифические.

Когда поступает информация в специфические ядра таламуса, то в коре возникают вызванные ответы, но ответы возникают в строго выбранных участках полушарий. Информация от неспецифических ядер таламуса поступает ко всей коре больших полушарий. Это происходит, чтобы повысить возбудимость всей коры, чтобы она более четко воспринимала специфическую информацию.

Адекватная боль возникает с участием лобной, теменной коры, таламуса. Таламус - высший центр болевой чувствительности. При разрушении одних ядер таламуса возникает невыносимая боль, при разрушении других ядер полностью теряется болевая чувствительность.

Неспецифические ядра по функции очень похожи на ретикулярную формацию, их еще называют ретикулярными ядрами.

И.И. Сеченов 1864 – открыл ретикулярную формацию, опыты на лягушках. Доказал, что в ЦНС наряду с явлениями возбуждения, есть явления торможения.


Ретикулярная формация – поддерживает кору в состоянии бодрствования. Тормозные влияния на СМ.

Мозолистое тело – плотный пучок нервных волокон, соединяет полушария, обеспечивает их совместную работу.

Гипоталамус – связан с гипофизом. Гипофиз – железа внутренней секреции, главная. В ней вырабатываются тропные гормоны, которые влияют на работу остальных эндокринных желез.

Нейросекреторные клетки гипоталамуса выделяют нейрогормоны:

Статины - тормозят выработку тропных гормонов гипофиза

Либерины – усиливают выработку тропных гормонов гипофиза

Функции - высший цент регуляции эндокринных желез

Нейросекреторные клетки, аксоны которых доходят до гипофиза и выделяют в гипофиз гормоны:

Окситоцин – обеспечивает сокращение матки при родах

Антидиуретический гормон – регулирует работу почек

Клетки гипоталамуса чувствительны к уровню половых гормонов (эстроген и андроген) и в зависимости от того, какие преобладают у человека, возникает та или иная половая мотивация. Клетки гипоталамуса чувствительны к температуре крови, регулирует теплоотдачу.

Главный сигнал голода – уровень глюкозы в крови. Только в гипоталамусе есть глюкорецептивные клетки, чувствительные к уровню глюкозы в крови. Собраны вместе и образуют центр голода.

Центр насыщения – возникновение чувства сытости.

Пример дисфункции: Булимия – заболевания центра сытости

Осморецептивные клетки – чувствительные к уровню солей в крови, возбуждаются – возникает чувство жажды.

На уровне гипоталамуса возникают только мотивации, а для их выполнения нужно включить кору.

Таламус является частью промежуточного мозга. Это структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга. Зрительный бугор в целом является подкорковой «станцией» для всех видов чувствительности. Здесь раздражения внешней и внутренней среды интегрируются, после чего поступают в кору большого мозга (коммутатор мозга).

Ядра таламуса функционально по характеру входящих и выходящих из них путей делятся на следующие группы.

  • 1. Специфические ядра. К ним относятся переднее вентральное, медиальное, вентролатеральиое, постлатеральное, постмедиальное, латеральное и медиальное коленчатые тела. Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору большого мозга от кожных, мышечных и других рецепторов. От специфических ядер информация о характере сенсорных стимулов поступает в строго определенные участки III-IV слоев коры большого мозга (соматотопическая локализация). Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности. Вентролатеральное ядро передает сигналы к двигательной коре, в связи с чем, является мишенью при стереотаксических операциях у больных с дискинезиями (болезнь Паркинсона, спастическая кривошея и т.д.).
  • 2. Ассоциативные ядра таламуса представлены передним медио-дорсальным, латеральным дорсальным ядрами и подушкой. Переднее ядро связано с лимбической корой (поясной извилиной), медиодорсальное - с лобной долей коры, латеральное дорсальное - с теменной, полушка - с ассоциативными зонами теменной и височной долями коры большого мозга. Основными клеточными структурами этих ядер являются мультиполярные нейроны, способные выполнять полисенсорные функции.
  • 3. Неспецифические ядра таламуса представлены срединным центром, парацентральным ядром, центральным медиальным и латеральным, субмедиальным, вентральным передним, парафасцикулярным комплексами, ретикулярным ядром, перивентрикулярной и центральной серой массой. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя не локальные, а диффузные связи. К неспецифическим ядрам поступают связи из РФ ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса. Возбуждение неспецифических ядер вызывает генерацию в коре специфической веретенообразной электрической активности, свидетельствующей о развитии сонного состояния.

Сложное строение таламуса, наличие в нем взаимосвязанных специфических, неспецифических и ассоциативных ядер, позволяет ему организовывать такие двигательные реакции, как сосание, жевание, глотание, смех. Двигательные реакции интегрируются в таламусе с вегетативными процессами, обеспечивающими эти движения.

Одним из важных образований ЦНС, участвующих в осуществлении сенсорных функций, является таламус. Он - своеобразный коллектор серсорних путей. Сюда поступают почти все пути (исключение составляет часть нюхозих путей). В таламусе насчитывают более 40 ядер, большинство которых получает аферентацию от разных чувствительных путей. Между нейронами таламуса существует широкая сеть контактов, которая обеспечивает как переработку информации от отдельных специфических сенсорных систем, так и межсистемной интеграции. В таламусе завершается подкорковая обработка восходящих афферентных сигналов. Здесь происходит частичная оценка ее значимости для организма, благодаря чему лишь часть информации об отправляется к коре большого мозга. Большинство афферентации от внутренних органов доходит лишь до таламуса. Хотя в неокортексе и является висцеральная зона, в которой наблюдаются так называемые вызванные потенциалы (ВП) при раздражении любого внутреннего органа, в ней не зарождается осознанное ощущение о состоянии наших внутренних органов. Не всегда поступает к коре большого мозга и афферентация от сомы. Благодаря этому кора большого мозга будто освобождается от оценки менее значимой информации и получает возможность заниматься решением существенных вопросов организации поведения человека. В оценке значимости афферентации, которая поступила в таламуса, большая роль отводится интеграции информации от различных сенсорных систем, а также тех отделов мозга, которые отвечают за мотивацию, память и т.д..
Ядерные структуры таламуса можно разделить по функциональному признаку на 4 большие группы.
1. Специфические ядра переключения (релейные). Эти ядра получают афференты от основных сенсорных систем - соматосенсорной, зрительной и слуховой - и переключают их на соответствующие зоны коры большого мозга.
2. Неспецифические ядра получают афференты от всех органов чувств, а также от ретикулярной формации ствола мозга и гипоталамуса. Отсюда ссылается импульсация во все зоны коры большого мозга (как в сенсорных отделов, так и в других его частей), а также к лимбической системе. Эти образования таламуса выполняют сходные с ретикулярной формацией мозга функции.
3. Ядра с ассоциативными функциями (филогенетически молодые) получают аферентацию от ядер собственно таламуса и осуществляют вышеназванные специфические и неспецифические функции. После анализа информация от этих ядер поступает в тех отделов коры большого мозга, которые выполняют ассоциативные функции. Эти отделы локализуются в теменной, височной и лобной долях. У человека они развиты в большей степени, чем у животных. Так, таламус участвует в интеграции этих участков, которые порой расположены одна вдали от друга.
4. Ядра, которые связаны с моторными зонами коры большого мозга, релейные несенсорный. Получают аферентацию от мозжечка, базальных ядер переднего мозга и передают в моторных зон коры большого мозга, то есть тем отделам, которые участвуют в формировании осознанных движений.
В таламусе благодаря взаимодействию сенсорных систем тормозится значительная часть информации, которая отсюда не поступает в расположенных выше корковых отделов сенсорных систем. Надо сказать, что связи таламуса с корой большого мозга не являются односторонними. Кора большого мозга поставляет нисходящие эфферентные импульсы различным частям таламуса. Таким путем регулируется обработка информации, которая поступила в таламуса. За счет сильной тормозной системы собственно таламуса и нисходящих влияний коры большого мозга образуется своеобразный «свободный коридор» для прохождения в коре большого мозга только важнейших сигналов.

Промежуточный мозг располагается под мозолистым телом и сводом, срастаясь по бокам с полушариями большого мозга.

К нему относятся:

Таламус (зрительные бугры),

Эпиталамус (надбугорная область),

Метаталамус (забугорная область) и

Гипоталамус (подбугорная область).

Полостью промежуточного мозга является III желудочек.

Таламус представляет собой парные скопления серого вещества, покрытые слоем белого вещества, имеющие яйцевидную форму.

В таламусе различают три основные группы ядер: передние, латеральные и медиальные . В латеральных ядрах происходит переключение всех чувствительных путей, направляющихся к коре больших полушарий.

В эпиталамусе лежит верхний придаток мозга - эпифиз, или шишковидное тело, подвешенное на двух поводках в углублении между верхними холмиками пластинки крыши.

Метаталамус представлен медиальными и латеральными коленчатыми телами. Они соединенными пучками волокон (ручки холмиков) с верхними и нижними холмиками пластинки крыши. В них лежат ядра, являющиеся рефлекторными центрами зрения и слуха.

Гипоталамус располагается вентральнее зрительного бугра и включает в себя собственно подбугорную область и ряд образований, расположенных на основании мозга.

Третий желудочек расположен по средней линии и представляет собой узкую вертикальную щель.

Главными образованиями промежуточного мозга являются таламус (зрительный бугор) и гипоталамус (подбугорная область).

Таламус - чувствительное ядро подкорки. Его называют "коллектором чувствительности", так как к нему сходятся афферентные (чувствительные) пути от всех рецепторов, исключая обонятельные рецепторы. Здесь находится третий нейрон афферентных путей, отростки которого заканчиваются в чувствительных зонах коры.

Главной функцией таламуса является интеграция (объединение) всех видов чувствительности. Для анализа внешней среды недостаточно сигналов от отдельных рецепторов. Здесь происходит сопоставление информации, получаемой по различным каналам связи, и оценка ее биологического значения. В зрительном бугре насчитывается 40 пар ядер, которые подразделяются на специфические (на нейронах этих ядер заканчиваются восходящие афферентные пути), неспецифические (ядра ретикулярной формации) и ассоциативные. Через ассоциативные ядра таламус связан со всеми двигательными ядрами подкорки - полосатым телом, бледным шаром, гипоталамусом и с ядрами среднего и продолговатого мозга.

Изучение функций зрительного бугра проводится путем перерезок, раздражения и разрушения. Кошка, у которой разрез сделан выше промежуточного мозга, резко отличается от кошки, у которой высшим отделом центральной нервной системы является средний мозг. Она не только поднимается и ходит, т. е. выполняет сложно координированные движения, но еще проявляет все признаки эмоциональных реакций. Легкое прикосновение вызывает злобную реакцию. Кошка бьет хвостом, скалит зубы, рычит, кусается, выпускает когти.

У человека зрительный бугор играет существенную роль в эмоциональном поведении, характеризующемся своеобразной мимикой, жестами и сдвигами функций внутренних органов. При эмоциональных реакциях повышается давление, учащаются пульс, дыхание, расширяются зрачки.

Мимическая реакция человека является врожденной. Если пощекотать нос плода 5 - 6 месяцев можно видеть типичную гримасу неудовольствия (П. К. Анохин). При раздражении зрительного бугра у животных возникают двигательные и болевые реакции - визг, ворчание. Эффект можно объяснить тем, что импульсы от зрительных бугров легко переходят на связанные с ними двигательные ядра подкорки.

В клинике симптомами поражения зрительных бугров являются сильная головная боль, расстройства сна, нарушения чувствительности, как в сторону повышения, так и понижения, нарушения движений, их точности, соразмерности, возникновение насильственных непроизвольных движений.

Гипоталамус является высшим подкорковым центром вегетативной нервной системы. В этой области расположены центры, регулирующие все вегетативные функции, обеспечивающие постоянство внутренней среды организма, а также регулирующие жировой, белковый, углеводный и водно-солевой обмен.

В деятельности вегетативной нервной системы гипоталамус играет такую же важную роль, какую играют красные ядра среднего мозга в регуляции скелетно-моторных функций соматической нервной системы.

Самые ранние исследования функций гипоталамуса принадлежат - Клоду Бернару. Он обнаружил, что укол в промежуточный мозг кролика вызывает повышение температуры тела почти на 3°С. Этот классический опыт, открывший локализацию центра терморегуляции в гипоталамусе, получил название теплового укола. После разрушения гипоталамуса животное становится пойкилотермным, т. е. теряет способность удерживать постоянство температуры тела. В холодной комнате температура тела понижается, а в жаркой повышается.

Позднее было установлено, что почти все органы, иннервируемые вегетативной нервной системой, могут быть активированы раздражением подбугорной области. Иными словами, все эффекты, которые можно получить при раздражении симпатических и парасимпатических нервов, получаются при раздражении гипоталамуса.

В настоящее время для раздражения различных структур мозга широко применяется метод вживления электродов. С помощью особой, так называемой стереотаксической техники, через трепанационное отверстие в черепе вводят электроды в любой заданный участок мозга. Электроды изолированы на всем протяжении, свободен только их кончик. Включая электроды в цепь, можно узко локально раздражать те или иные зоны.

При раздражении передних отделов гипоталамуса возникают парасимпатические эффекты - усиление движений кишечника, отделение пищеварительных соков, замедление сокращений сердца и др.

При раздражении задних отделов наблюдаются симпатические эффекты - учащение сердцебиения, сужение сосудов, повышение температуры тела и др. Следовательно, в передних отделах подбугорной области располагаются парасимпатические центры, а в задних - симпатические.

Так как раздражение при помощи вживленных электродов производится на животном, без применения анестезии, становится возможным судить о поведении животного. В опытах Андерсена на козе с вживленными электродами был найден центр, раздражение которого вызывает неутолимую жажду - центр жажды. При его раздражении коза могла выпивать до 10 л воды. Раздражением других участков можно было, заставить есть сытое животное (центр голода).

Широкую известность получили опыты испанского ученого Дельгадо на быке с электродом, вживленным в «центр страха». Когда на арене разъяренный бык бросался на тореадора, включали раздражение, и бык отступал с ясно выраженными признаками страха.

Американский исследователь Д. Олдз предложил модифицировать метод - предоставить возможность животному самому замыкать электроды, предполагая, что неприятных раздражений животное будет избегать и, наоборот, стремиться повторять приятные.

Опыты показали, что имеются структуры, раздражение которых вызывает безудержное стремление к повторению. Крысы доводили себя до истощения, нажимая на рычаг до 14000 раз! Кроме того, обнаружены структуры, раздражение которых, по-видимому, вызывает крайне неприятное ощущение, так как крыса второй раз избегает нажать на рычаг повторно и убегает от него. Первый центр, очевидно, является центром удовольствия, а второй - центром неудовольствия.

Чрезвычайно важным для понимания функций гипоталамуса явилось открытие в этом отделе мозга рецепторов, улавливающих изменения температуры крови (терморецепторы), осмотического давления (осморецепторы) и состава крови (глюкорецепторы).

С рецепторов, обращенных в кровь, возникают рефлексы, направленные на поддержание постоянства внутренней среды организма - гомеостаза. "Голодная кровь", раздражая глюко-рецепторы, возбуждает пищевой центр: возникают пищевые реакции, направленные на поиск и поедание пищи.

Одним из частых проявлений заболевания гипоталамуса в клинике является нарушение водно-солевого обмена, проявляющееся в выделении большого количества мочи с низкой плотностью. Заболевание носит название несахарного мочеизнурения или несахарного диабета.

Подбугорная область тесно связана с деятельностью гипофиза. В крупных нейронах надзрительного и околожелудочкового ядер гипофиза образуются гормоны - вазопрессин и окситоцин. По аксонам гормоны стекают к гипофизу, где накапливаются, а затем поступают в кровь.

Иное взаимоотношение между гипоталамусом и передней долей гипофиза. Сосуды, окружающие ядра гипоталамуса, объединяются в систему вен, которые спускаются к передней доле гипофиза и здесь распадаются на капилляры. С кровью к гипофизу поступают вещества - релизинг-факторы, или освобождающие факторы, стимулирующие образование гормонов в передней его доле.

Гипофиз тесно связан с гипоталамусом структурно и функционально. Задние отделы гипофиза (нейрогипофиз) накапливают гормоны, продуцируемые гипоталамусом и регулирующие водно-солевое равновесие, контролирующие функции матки и молочных желез.

Передние отделы гипофиза (аденогипофиз) вырабатывают:

адренокортикотропный гормон - АКТГ, который стимулирует работу желез надпочечников;

тиреотропный гормон - стимулирует рост и секрецию щитовидной железы;

гонадотропный гормон - регулирует активность половых желез;

соматотропный гормон - обеспечивает развитие костной системы; пролактин - стимулирует рост и активность молочных желез и др.

В гипоталамусе и гипофизе образуются также нейрорегуляторные энкефалины, эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса.