Ремонт и отделка

Последствия взрыва водородной бомбы в марианской впадине. Чем опасен взрыв ядерной бомбы в тихом океане

Последствия взрыва водородной бомбы в марианской впадине. Чем опасен взрыв ядерной бомбы в тихом океане

Водородная бомба (Hydrogen Bomb, HB, ВБ) — оружие массового поражения, обладающее невероятной разрушительной силой (ее мощность оценивается мегатоннами в тротиловом эквиваленте). Принцип действия бомбы и схема строения базируется на использовании энергии термоядерного синтеза ядер водорода. Процессы, протекающие во время взрыва, аналогичны тем, что протекают на звёздах (в том числе и на Солнце). Первое испытание пригодной для транспортировки на большие расстояния ВБ (проекта А.Д.Сахарова) было проведено в Советском Союзе на полигоне под Семипалатинском.

Термоядерная реакция

Солнце содержит в себе огромные запасы водорода, находящегося под постоянным действием сверхвысокого давления и температуры (порядка 15 млн градусов Кельвина). При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии.

Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. вещества в секунду, выделяя при этом в космическое пространство непрерывный поток энергии.

Изотопы водорода

Самым простым из всех существующих атомов является атом водорода. В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды (H2O), было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода. Она содержит «тяжёлые» изотопы водорода (2H или дейтерий), ядра которых, помимо одного протона, содержат так же один нейтрон (частицу, близкую по массе к протону, но лишённую заряда).

Науке известен также тритий — третий изотоп водорода, ядро которого содержит 1 протон и сразу 2 нейтрона. Для трития характерна нестабильность и постоянный самопроизвольный распад с выделением энергии (радиации), в результате чего образуется изотоп гелия. Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения. Получение трития возможно также и в ядерном реакторе путём облучения изотопа литий-6 мощным потоком нейтронов.

Разработка и первые испытания водородной бомбы

В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок (атолл в Тихом океане) было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза.

Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость (размером с трёхэтажный дом), наполненную жидким дейтерием.

В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А.Д. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 (данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор) имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике.

Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы (15 Мт) на испытательном полигоне на атолле Бикини (Тихий океан). Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно «Счастливый дракон» и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации.

Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза. Но расчёты и замеры реальных радиоактивных осадков сильно разнились, причём как по количеству, так и по составу. Поэтому в руководстве США было принято решение временно приостановить проектирование данного вооружения до полного изучения его влияния на окружающую среду и человека.

Видео: испытания в СССР

Царь-бомба — термоядерная бомба СССР

Жирную точку в цепи набора тоннажа водородных бомб поставил СССР, когда 30 октября 1961 года на Новой Земле было проведено испытание 50-мегатонной (крупнейшей в истории) «Царь-бомбы » — результата многолетнего труда исследовательской группы А.Д. Сахарова. Взрыв прогремел на высоте 4 километра, а ударную волную трижды зафиксировали приборы по всему земному шару. Несмотря на то, что испытание не выявило никаких сбоев, бомба на вооружение так и не поступила. Зато сам факт обладания Советами таким вооружением произвёл неизгладимое впечатление на весь мир, а в США прекратили набирать тоннаж ядерного арсенала. В России, в свою очередь, решили отказаться от ввода на боевое дежурство боеголовок с водородными зарядами.

Водородная бомба — сложнейшее техническое устройство, взрыв которого требует последовательного протекания ряда процессов.

Сначала происходит детонация заряда-инициатора, находящегося внутри оболочки ВБ (миниатюрная атомная бомба), результатом которой становится мощный выброс нейтронов и создание высокой температуры, требуемой для начала термоядерного синтеза в основном заряде. Начинается массированная нейтронная бомбардировка вкладыша из дейтерида лития (получают соединением дейтерия с изотопом лития-6).

Под действием нейтронов происходит расщепление лития-6 на тритий и гелий. Атомный запал в этом случае становится источником материалов, необходимых для протекания термоядерного синтеза в самой сдетонировавшей бомбе.

Смесь трития и дейтерия запускает термоядерную реакцию, вследствие чего происходит стремительное повышение температуры внутри бомбы, и в процесс вовлекается всё больше и больше водорода.
Принцип действия водородной бомбы подразумевает сверхбыстрое протекание данных процессов (устройство заряда и схема расположения основных элементов способствует этому), которые для наблюдателя выглядят мгновенными.

Супербомба: деление, синтез, деление

Последовательность процессов, описанных выше, заканчивается после начала реагирования дейтерия с тритием. Далее было решено использовать деление ядер, а не синтез более тяжёлых. После слияния ядер трития и дейтерия выделяется свободный гелий и быстрые нейтроны, энергии которых достаточно для инициации начала деления ядер урана-238. Быстрым нейтронам под силу расщепить атомы из урановой оболочки супербомбы. Расщепление тонны урана генерирует энергию порядка 18 Мт. При этом энергия расходуется не только на создание взрывной волны и выделения колоссального количества тепла. Каждый атом урана распадается на два радиоактивных «осколка». Образуется целый «букет» из различных химических элементов (до 36) и около двухсот радиоактивных изотопов. Именно по этой причине и образуются многочисленные радиоактивные осадки, регистрируемые за сотни километров от эпицентра взрыва.

После падения «железного занавеса», стало известно, что в СССР планировали разработку «Царь бомбы», мощностью в 100 Мт. Из-за того, что тогда не было самолёта, способного нести столь массивный заряд, от идеи отказались в пользу 50 Мт бомбы.

Последствия взрыва водородной бомбы

Ударная волна

Взрыв водородной бомбы влечёт масштабные разрушения и последствия, а первичное (явное, прямое) воздействие имеет тройственный характер. Самое очевидное из всех прямых воздействий — ударная волна сверхвысокой интенсивности. Её разрушительная способность уменьшается при удалении от эпицентра взрыва, а так же зависит от мощности самой бомбы и высоты, на которой произошла детонация заряда.

Тепловой эффект

Эффект от теплового воздействия взрыва зависит от тех же факторов, что и мощность ударной волны. Но к ним добавляется ещё один — степень прозрачности воздушных масс. Туман или даже незначительная облачность резко уменьшает радиус поражения, на котором тепловая вспышка может стать причиной серьёзных ожогов и потери зрения. Взрыв водородной бомбы (более 20 Мт) генерирует невероятное количество тепловой энергии, достаточной, чтобы расплавить бетон на расстоянии 5 км, выпарить воду практически всю воду из небольшого озера на расстоянии в 10 км, уничтожить живую силу противника, технику и постройки на том же расстоянии. В центре образуется воронка диаметром 1-2 км и глубиной до 50 м, покрытая толстым слоем стекловидной массы (несколько метров пород, имеющих большое содержание песка, почти мгновенно плавятся, превращаясь в стекло).

Согласно расчётам, полученным в ходе реальных испытаний, люди получают 50% вероятность остаться в живых, если они:

  • Находятся в железобетонном убежище (подземном) в 8 км от эпицентра взрыва (ЭВ);
  • Находятся в жилых домах на расстоянии 15 км от ЭВ;
  • Окажутся на открытой территории на расстоянии более 20 км от ЭВ при плохой видимости (для «чистой» атмосферы минимальное расстояние в этом случае составит 25 км).

С удалением от ЭВ резко возрастает и вероятность остаться в живых у людей, оказавшихся на открытой местности. Так, на удалении в 32 км она составит 90-95%. Радиус в 40-45 км является предельным для первичного воздействия от взрыва.

Огненный шар

Ещё одним явным воздействием от взрыва водородной бомбы являются самоподдерживающиеся огненные бури (ураганы), образующиеся вследствие вовлекания в огненный шар колоссальных масс горючего материала. Но, несмотря на это, самым опасным по степени воздействия последствием взрыва окажется радиационное загрязнение окружающей среды на десятки километров вокруг.

Радиоактивные осадки

Возникший после взрыва огненный шар быстро наполняется радиоактивными частицами в огромных количествах (продукты распада тяжёлых ядер). Размер частиц настолько мал, что они, попадая в верхние слои атмосферы, способны пребывать там очень долго. Всё, до чего дотянулся огненный шар на поверхности земли, моментально превращается в пепел и пыль, а затем втягивается в огненный столб. Вихри пламени перемешивают эти частички с заряженными частицами, образуя опасную смесь радиоактивной пыли, процесс оседания гранул которой растягивается на долгое время.

Крупная пыль оседает довольно быстро, а вот мелкая разносится воздушными потоками на огромные расстояния, постепенно выпадая из новообразованного облака. В непосредственной близости от ЭВ оседают крупные и наиболее заряженные частицы, в сотнях километров от него всё ещё можно встретить различимые глазом частицы пепла. Именно они образуют смертельно опасный покров, толщиной в несколько сантиметров. Каждый кто окажется рядом с ним, рискует получить серьёзную дозу облучения.

Более мелкие и неразличимые частицы могут «парить» в атмосфере долгие годы, многократно огибая Землю. К тому моменту, когда выпадут на поверхность, они изрядно теряют радиоактивность. Наиболее опасен стронций-90, имеющий период полураспада 28 лет и генерирующий стабильное излучение на протяжении всего этого времени. Его появление определяется приборами по всему миру. «Приземляясь» на траву и листву, он становится вовлечённым в пищевые цепи. По этой причине у людей, находящихся за тысячи километров от мест испытаний при обследовании обнаруживается стронций-90, накапливаемый в костях. Даже если его содержание крайне невелико, перспектива оказаться «полигоном для хранения радиоактивных отходов» не сулит человеку ничего хорошего, приводя к развитию костных злокачественных новообразований. В регионах России (а также других стран), близких к местам пробных запусков водородных бомб, до сих пор наблюдается повышенный радиоактивный фон, что ещё раз доказывает способность этого вида вооружения оставлять значительные последствия.

Видео о водородной бомбе

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Северокорейский чиновник намекнул о проведении ядерного испытания в море, что будет иметь серьёзные экологические последствия.

Последний горячий обмен любезностями между Соединёнными Штатами и Северной Кореей обернулся новой угрозой. Во вторник, во время выступления в Организации Объединённых Наций, президент Трамп заявил, что его правительство «полностью уничтожит Северную Корею», если это будет необходимо, для защиты Соединённых Штатов или их союзников. В пятницу Ким Чен Ын ответил ему, заметив, что Северная Корея «со всей серьёзностью рассмотрит вариант соответствующих, самых жёстких контрмер в истории».

Северокорейский лидер не уточнил характер этих контрмер, но его министр иностранных дел намекнул: Северная Корея может испытать водородную бомбу в Тихом океане.

«Это может быть самый мощный взрыв бомбы в Тихом океане» — заявил министр иностранных дел Ри Йонг Хо журналистам на Генеральной Ассамблее ООН в Нью-Йорке. «Мы не имеем представления о том, какие действия могут быть предприняты, так как решения принимает наш лидер Ким Чен Ын».

Северная Корея до сих пор проводила ядерные испытания под землёй и в небе. Проведение испытания водородной бомбы в океане означает установку ядерной боеголовки на баллистическую ракету и доставку её к морю. Если Северная Корея сделает подобное, это будет первым взрывом ядерного оружия в атмосфере за почти 40 лет . Это приведёт к неисчислимым геополитическим последствиям – и серьёзному воздействию на окружающую среду.

Водородные бомбы намного мощнее атомных бомб, и способны производить во много раз более взрывоопасную энергию . Если такая бомба поразит Тихий океан, то взорвётся ослепительной вспышкой и породит грибное облако.

Непосредственные последствия, вероятно, будут зависеть от высоты детонации над водой. Первоначальный взрыв может уничтожить большую часть жизни в зоне удара — множество рыб и другой морской жизни — мгновенно. Когда Соединённые Штаты сбросили атомную бомбу на Хиросиму в 1945 году, погибло все население, расположенное в радиусе 1600 футов (500 метров) от эпицентра .

Взрыв наполнит радиоактивными частицами воздух и воду. Ветер может отнести их на сотни миль.

Дым от места взрыва может блокировать солнечный свет и препятствовать жизни в море, которая зависит от фотосинтеза. Воздействие радиации вызовет серьёзные проблемы для близлежащей морской жизни. Известно, что радиоактивность разрушает клетки у людей, животных и растений, вызывая изменения в генах. Эти изменения могут привести к калечащим мутациям в будущих поколениях. По словам экспертов , яйца и личинки морских организмов особенно чувствительны к радиации. Пострадавшие животные могут получить облучение по всей пищевой цепи.

Испытание может также иметь разрушительные и долговременные последствия для людей и других животных, если радиоактивные осадки достигнут суши. Частицы могут отравить воздух, почву и воду. Спустя более 60 лет после того, как США испытали серию атомных бомб возле атолла Бикини на Маршалловых островах, остров остаётся «непригодным для жизни», согласно докладу The Guardian в 2014 году. Жители, которые уехали с островов до испытаний и вернулись в 1970-х годах, обнаружили высокие уровни радиации в продуктах, выращенных вблизи ядерного полигона, и были вынуждены снова уехать.

До подписания Договора о всеобъемлющем запрещении ядерных испытаний, который был подписан в 1996 году, в период с 1945 по 1996 год различными странами было проведено более 2000 ядерных испытаний под землёй, над землёй и под водой. Соединённые Штаты испытали в Тихом океане ракету с ядерным оружием, похожую по описанию на то, что намекнул северокорейский министр, в 1962 году. Последние наземные испытания, проведённые ядерной державой, были организованы Китаем в 1980 году.

Только в этом году Северная Корея провела 19 испытаний баллистических ракет и одно ядерное испытание, согласно базе данных «Инициативы по ядерным угрозам». Ранее в этом месяце Северная Корея заявила, что провела успешные подземные испытания водородной бомбы. Мероприятие привело к искусственному землетрясению вблизи испытательного полигона, которое было станциями сейсмической активности по всему миру. Геологическая служба США сообщила , что землетрясение имело мощь 6.3 по шкале Рихтера. Через неделю Организация Объединённых Наций приняла резолюцию, разработанную США, которая наложила новые санкции на Северную Корею из-за её ядерных провокаций.

Намёки Пхеньяна на возможные испытания водородной бомбы в Тихом океане, скорее всего, увеличат политическую напряжённость и внесут свой вклад в постоянно растущую дискуссию об истинных возможностях их ядерной программы. Водородная бомба в океане, конечно, поставит точку в любых предположениях.

(прототип водородной бомбы) на атолле Эниветок (Маршалловы острова в Тихом океане).

Разработку водородной бомбы вел физик Эдвард Теллер. В апреле 1946 года в Лос-Аламосской национальной лаборатории, ведущей в США секретные работы по ядерному оружию, была организована группа ученых под его руководством, которой и предстояло решить эту задачу.

Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия (стабильный изотоп водорода с атомной массой, равной 2) и трития (радиоактивный изотоп водорода с массовым числом 3). Приняв это за основу, ученые США в начале 1950 года приступили к реализации проекта по созданию водородной бомбы. Чтобы начался процесс ядерного синтеза и произошел взрыв, требовались миллионные температуры и сверхвысокие давления на компоненты. Столь высокие температуры планировалось создать предварительным подрывом внутри водородной бомбы небольшого атомного заряда. А проблему получения давления в миллионы атмосфер, необходимого для сжатия дейтерия и трития, Теллеру помог решить физик Станислав Улам. Эта модель американской водородной бомбы получила название Улама-Теллера . Сверхдавление для трития и дейтерия в этой модели достигалось не взрывной волной от подрыва химических взрывчатых веществ, а фокусировкой отраженной радиации после предварительного взрыва небольшого атомного заряда внутри. Модель требовала большого количества трития, и для его производства американцы построили новые реакторы.

Испытание прототипа водородной бомбы под кодовым названием Ivy Mike состоялось 1 ноября 1952 года. Мощность его составила 10,4 мегатонны в тротиловом эквиваленте, что примерно в 1000 раз превосходило мощность атомной бомбы, сброшенной на Хиросиму. После взрыва один из островков атолла, на котором был размещен заряд, был полностью разрушен, а кратер от взрыва был больше мили в диаметре .

Однако взорванное устройство еще не было настоящей водородной бомбой и не годилось для транспортировки: это была сложная стационарная установка размером с двухэтажный дом и массой 82 тонны. Кроме того, ее конструкция, основанная на использовании жидкого дейтерия, оказалась неперспективной и в дальнейшем не применялась.

СССР осуществил свой первый термоядерный взрыв 12 августа 1953 года. По мощности (около 0,4 мегатонны) он существенно уступал американскому, но зато боеприпас был транспортабельным и жидкий дейтерий в нем не использовался.

Материал подготовлен на основе информации открытых источников

Последний пламенный диалог между Соединенными Штатами и Северной Кореей породил новую угрозу. В прошлый вторник, во время выступления в ООН президент Трамп сказал, что его правительство «полностью уничтожит Северную Корею», если это будет необходимо для защиты Соединенных Штатов или их союзников. В пятницу Ким Чен Ын ответил, что Северная Корея «со всей серьезностью рассмотрит соответствующий, самый высокий в истории уровень жесткой контрмеры».

Северокорейский лидер не уточнил характер этой контрмеры, но его министр иностранных дел намекнул: Северная Корея может испытать водородную бомбу в Тихом океане.

«Это может быть самый мощный взрыв водородной бомбы в Тихом океане, - заявил министр иностранных дел Ли Ен Хо журналистам в Генеральной Ассамблее ООН в Нью-Йорке. - Мы не имеем представления о том, какие действия могут быть предприняты, поскольку решение остается за лидером Ким Чен Ыном».

До сих пор Северная Корея проводила ядерные испытания в подземных камерах, а баллистических ракет - в небе. Если Северная Корея выполнит свою угрозу, это испытание будет первой детонацией ядерного оружия в атмосфере за почти 40 лет.

Водородные бомбы намного мощнее атомных и способны вырабатывать во много раз более взрывоопасную энергию. Если водородная бомба будет испытана в Тихом океане, она взорвется с ослепительной вспышкой и произведет свое знаменитое «грибное» облако. Непосредственные последствия, вероятно, будут зависеть от высоты детонации над водой. Первоначальный взрыв может уничтожить большую часть жизни в зоне удара - множество рыб и другой морской фауны - мгновенно. Когда Соединенные Штаты сбросили атомную бомбу на Хиросиму в 1945 году, погибло все живое в радиусе 1600 футов.

Взрыв разнесет радиоактивные частицы по воздуху, а ветер развеет их на сотни миль. Дым может заслонить солнечный свет и убить морскую фауну, которая не проживет без солнца. Известно, что радиация разрушает клетки у людей, животных и растений, вызывая изменения в генах. Эти изменения могут привести к мутациям в будущих поколениях. По словам экспертов, яйца и личинки морских организмов особенно чувствительны к радиации. Пострадавшие животные могут передать облучение по пищевой цепочке.

Взрыв может также иметь разрушительные и долговременные последствия для людей и животных, если радиоактивные осадки достигнут суши. Частицы могут заразить воздух, почву и запасы воды. Спустя более 60 лет после того, как США провели серию испытаний атомных бомб возле атолла Бикини на Маршалловых островах, он до сих пор остается «непригодным для жизни», согласно докладу The Guardian 2014 года.

В соответствии с Договором о всеобъемлющем запрещении ядерных испытаний, который был заключен вместе с договором 1996 года о запрете ядерных испытаний в 1996 году, в период с 1945 по 1996 год было проведено более 2000 ядерных испытаний в подземных камерах, над землей и под водой. Последний надземный тест ядерной державы был проведен в Китае в 1980 году.

Только в этом году Северная Корея устроила 19 испытаний баллистических ракет и одно ядерное испытание. Ранее в этом месяце КНДР заявила, что провела успешный подземный тест водородной бомбы, вызвавший искусственное землетрясение вблизи испытательного полигона, которое было зарегистрировано станциями сейсмической активности по всему миру.